
How to determine row level security at runtime
Published on InterSystems Developer Community (https://community.intersystems.com)

 Article
 Eduard Lebedyuk · Jan 9, 2017 3m read

How to determine row level security at runtime
In addition to its general security, Caché offers SQL security with a granularity of a single row. This is called row-
level security. With row-level security, each row holds a list of authorized viewers, which can be either users or
roles. By default access is determined at object modification Some time ago I became interested in determining row-
level security at runtime. Here's how to implement it.

Some notes on RLS:

Row-level security is only available for persistent classes.
Row-level security is only available for tables instantiated on the Caché server. It is not available for link
tables (that is, those that are instantiated on foreign servers).
Row-level security is only enforced when accessing rows from SQL. It is not enforced when directly
accessing globals or when accessing globals via the object interface (define %OnOpen callback to add rls
for objects).

Here's the simple example of rls enabled class:

Class Utils.RLS Extends %Persistent
{
Parameter ROWLEVELSECURITY = 1;

Property %READERLIST As %String;
}

Value of %READERLIST property is a comma-delimited string listing users or roles that may view the row (empty
string for all users).

So, for example if %READERLIST for one row is "_SYSTEM,%Development" then _SYSTEM user can access the
row and all users who hold %Development role.

%READERLIST value is used in %RLS index which in turn is used by SQL to determine access.

Dynamic row-level security

By default %READERLIST is provided by user, stored, indexed and used to determine access. But I wanted
dynamic row-level security, for example during each access attempt call a method which determines - does the
user has access or not. To achieve that result two things are required:

Disable %RLI index (or use %IGNOREINDEX in every query)
Make %READERLIST property always calculated

Thankfully both of these things are easily achievable, to disable %RLI index for selected class execute once:

Page 1 of 3

https://community.intersystems.com/user/eduard-lebedyuk
https://community.intersystems.com/post/there-way-determine-row-level-security-runtime

How to determine row level security at runtime
Published on InterSystems Developer Community (https://community.intersystems.com)

do $System.SQL.SetMapSelectability(class, "%RLI", $$$NO)

You may also need to purge old queries which could use the index:

do $System.SQL.PurgeForTable(class)

That done, lets make %READERLIST property always calculated:

Property %READERLIST As %String [Calculated, Private, SqlComputeCode = {s {*} = ##cl
ass(Utils.RLS).GetAccess({ID})}, SqlComputed];

ClassMethod GetAccess(Id) As %String
{
 return:Id>3 "_SYSTEM"
 return "%All"
}

Here only _SYSTEM user can access all records with Id>3 and for Id 1 and 2 only users with %All can have
access.

And here's the complete example:

Class Utils.RLS Extends %Persistent
{

Parameter ROWLEVELSECURITY = 1;

Property %READERLIST As %String [Calculated, Private, SqlComputeCode = {s {*} = ##cl
ass(Utils.RLS).GetAccess({ID})}, SqlComputed];

Property data As %String;

ClassMethod GetAccess(Id) As %String
{
 return:Id>3 "_SYSTEM"
 return "%All"
}

/// do ##class(Utils.RLS).Fill()
ClassMethod Fill(N = 5)
{
 do ..%KillExtent()
 for i=1:1:N {
 &sql(insert into Utils.RLS(data) values(:i))
 }
 do $SYSTEM.SQL.SetMapSelectability($classname(),"%RLI",$$$NO)
 do $system.SQL.PurgeForTable($classname())

 do ##class(%SQL.Statement).%ExecDirect(,"select * from "_$classname()).%Display()
}
}

If I execute:

do ##class(Utils.RLS).Fill()

Page 2 of 3

How to determine row level security at runtime
Published on InterSystems Developer Community (https://community.intersystems.com)

As a user with %All I receive the following output:

ID data
1 1
2 2
3 3

3 Rows(s) Affected

And as _SYSTEM I receive all 5 rows:

ID data
1 1
2 2
3 3
4 4
5 5

5 Rows(s) Affected

Advantages of dynamic row-level security

You can determine access based on external state: global value, day of week, holidays, %request state,
etc.
You don't need to modify %READERLIST to change access permission, only modification of GetAccess
method is required

Disadvantages of dynamic row-level security

Slow
Uncompilation enables %RLI index. UnCompilation hook is required to disable index again

Links

Documentation
GitHub

Author would like to thank an engineer who provided main implementation ideas for this article at Russian Caché
forum.

#Caché #SQL

 Source URL:https://community.intersystems.com/post/how-determine-row-level-security-runtime

Page 3 of 3

http://docs.intersystems.com/latest/csp/docbook/DocBook.UI.Page.cls?KEY=GOBJ_persother#GOBJ_persother_rls
https://github.com/eduard93/Utils/blob/master/Utils/RLS.cls.xml
http://www.sql.ru/blogs/servit/2103
http://www.sql.ru/blogs/servit/2103
https://community.intersystems.com/tags/cach%C3%A9
https://community.intersystems.com/tags/sql
https://community.intersystems.com/post/how-determine-row-level-security-runtime

