How to determine row level security at runtime
Published on InterSystems Developer Community (https://community.intersystems.com)

Article
Eduard Lebedyuk -Jan9,2017 3 read

How to determine row level security at runtime

In addition to its general security, Caché offers SQL security with a granularity of a single row. This is called row-
level security. With row-level security, each row holds a list of authorized viewers, which can be either users or
roles. By default access is determined at object modification Some time ago | became interested in determining row-
level security at runtime. Here's how to implement it.

Some notes on RLS:

* Row-level security is only available for persistent classes.

* Row-level security is only available for tables instantiated on the Caché server. It is not available for link
tables (that is, those that are instantiated on foreign servers).

* Row-level security is only enforced when accessing rows from SQL. It is not enforced when directly
accessing globals or when accessing globals via the object interface (define %0OnOpen callback to add rls
for objects).

Here's the simple example of rls enabled class:

Class Utils. RLS Extends %Per si st ent

{
Par anmet er ROALEVELSECURITY = 1,

Property YREADERLI ST As ¥Stri ng;
}

Value of %READERLIST property is a comma-delimited string listing users or roles that may view the row (empty
string for all users).

So, for example if %READERLIST for one row is "SYSTEM,%Development” then SYSTEM user can access the
row and all users who hold %Development role.

%READERLIST value is used in %RLS index which in turn is used by SQL to determine access.

Dynamic row-level security

By default %READERLIST is provided by user, stored, indexed and used to determine access. But | wanted
dynamic row-level security, for example during each access attempt call a method which determines - does the
user has access or not. To achieve that result two things are required:

¢ Disable %RLI index (or use %IGNOREINDEX in every query)
* Make %READERLIST property always calculated

Thankfully both of these things are easily achievable, to disable %RLI index for selected class execute once:

Page 1 of 3

https://community.intersystems.com/user/eduard-lebedyuk
https://community.intersystems.com/post/there-way-determine-row-level-security-runtime

How to determine row level security at runtime
Published on InterSystems Developer Community (https://community.intersystems.com)

do $System SQL. Set MapSel ectability(class, "WRLI", $$$NO

You may also need to purge old queries which could use the index:

do $System SQL. Pur geFor Tabl e(cl ass)

That done, lets make %READERLIST property always calculated:

Property YREADERLI ST As ¥%string [Cal cul ated, Private, Sgl ConputeCode = {s {*} = ##cl
ass(Utils.RLS). Get Access({ID})}, Sqgl Conputed];

Cl assMet hod Get Access(1d) As %Gtring

{
return:1d>3 "_SYSTEM

return "%AI"

}

Here only SYSTEM user can access all records with Id>3 and for Id 1 and 2 only users with %All can have
access.

And here's the complete example:

Class Utils. RLS Extends %Per si st ent
{

Par anet er ROALEVELSECURITY = 1,

Property YREADERLI ST As ¥%string [Cal cul ated, Private, Sqgl ConputeCode = {s {*} = ##cl
ass(Utils.RLS). Get Access({ID})}, Sqgl Conputed];

Property data As %string;

Cl assMet hod Get Access(ld) As %Btring
{

return: 1 d>3 "_SYSTEM

return "%Al I "

}

/1] do ##class(Utils.RLS).Fill()
ClassMethod Fill (N = 5)

{
do ..%Kill Extent()
for i=1:1:N {
&sqgl (insert into Uils.RLS(data) val ues(:i))
}
do $SYSTEM SQL. Set MapSel ect abi | i t y($cl assname(), "9RLI ", $$$NO)
do $system SQ.. Pur geFor Tabl e($cl assnane())
do ##cl ass(¥BQL. St atement) . ¥ExecDirect (, "select * from™"_$cl assname()). % spl ay()
}
}
If | execute:

do ##class(Utils.RLS).Fill ()

Page 2 of 3

How to determine row level security at runtime
Published on InterSystems Developer Community (https://community.intersystems.com)

As a user with %All | receive the following output:

I D dat a

1 1

2 2

3 3

3 Rows(s) Affected

And as SYSTEM I receive all 5 rows:

D

I d
1 1
2 2
3 3
4 4
5 5

5 Rows(s) Affected

Advantages of dynamic row-level security
* You can determine access based on external state: global value, day of week, holidays, %request state,
etc.
* You don't need to modify %READERLIST to change access permission, only modification of GetAccess
method is required

Disadvantages of dynamic row-level security

¢ Slow
* Uncompilation enables %RLI index. UnCompilation hook is required to disable index again

Links

* Documentation
e GitHub

Author would like to thank an engineer who provided main implementation ideas for this article at Russian Caché
forum.

#Caché #SQL

Source URL:https://community.intersystems.com/post/how-determine-row-level-security-runtime

Page 3 of 3

http://docs.intersystems.com/latest/csp/docbook/DocBook.UI.Page.cls?KEY=GOBJ_persother#GOBJ_persother_rls
https://github.com/eduard93/Utils/blob/master/Utils/RLS.cls.xml
http://www.sql.ru/blogs/servit/2103
http://www.sql.ru/blogs/servit/2103
https://community.intersystems.com/tags/cach%C3%A9
https://community.intersystems.com/tags/sql
https://community.intersystems.com/post/how-determine-row-level-security-runtime

