
RESTful API
Published on InterSystems Developer Community (https://community.intersystems.com)

 Article
 Istvan Hahn · Oct 12, 2016 12m read

RESTful API
Beginner’s guide to RESTful Application Program Interface (API) design and documentation. Through the example
you will learn some common pattern for RESTful API.

Before you read
You need to know

How to create RESTful web service in Ensemble
How to consume RESTful web service in Ensemble
How to pass service parameters
How to return service result

What is a Service API?
What is an Application Programming Interface? Is it something materialized? Is it a single programming unit? What
is an API for? From my point of view an API is something which is determined by the program code in an indirect
way. But the fully defined API is provided by a container (controlled by deployment settings) running the executable
program. So I rather define the API as the public description of a service. The description could be either human
readable or for robots only. Or both. An API is for sharing essential information about a service with those who are
about to consume it. An API explains what the service for, the context in which it can be used, what the functions
are, what data structures are managed etc.

In the good old days the “program documentation” was more or less “a necessary evil”. The modern programming
languages were forcing kind of a documentation by introducing declarations in the program source. Although
declarations were the “robot” readable documentation, by using tools (runoff, Java doc…) you could extract
information and format it for humans. Even if no single line of true documentation was add to the source, these
tools were still able to produce some minimal text.

Is it somewhat different these days? Not really. Service API remained an abstraction what people mean by
collection of information required to properly use a functional piece of computer software. There are languages to
formalize the API definition like Web Services Description Language (WSDL). Unfortunately those have limited use.
Not because for example WSDL is not capable enough to express a RESTful API, but because of non-technical
mismatch. (How does it look like expressing a JSON structure in XML?) At the end there is no such de-facto
standard language for REST as WSDL for SOAP Web Services. Pity. Is not it?

Never mind. Anyhow, first we need to understand what an API is documenting.

What an API is made of?
What are the core attributes of a service.

Service location. The URL root path of the service. Like http://localhost:57774/csp/msa/person.
Service methods. Those are the functions of a service. A method is defined by combination of the verb from

Page 1 of 14

https://community.intersystems.com/user/istvan-hahn
http://localhost:57774/csp/msa/person

RESTful API
Published on InterSystems Developer Community (https://community.intersystems.com)

the HTTP header (GET, POST, PUT…) and the additional path type parameters.
Accepted method parameters. A list of parameter with its type. The type can be path for parameters
included in the URL path; query for URL query encoded; form for form data; content for HTTP message
body.
Return status. The status field from the HTTP response header. There might be several return status codes
per service method. The number is depending on the service method and the granularity of exception
handling.
Response contents. The expected contents per status code. The format can be different by status code.
For example on successful completion of a request a JSON serialized object is expected. In case of server
error (500) a plain text explanation is sent.

Example API
First let us try do describe what are we trying to achieve. We are going to build a very simple service. A registry
service. It is going to manage resources of the same type. For example persons.

The structure is very simple: a name, date and place of birth, mother’s maiden name and a generated internal
unique registry ID. Place has a structure like: country, city.

We would like to insert a new record into our registry (update full registry entry), update individual attributes of an
entry (update attribute), delete an entry, get a single entry by registry ID, query a list of registry IDs based on
attribute match.

We also want some service function: initialize a registry, populate some records for testing.

From the external world we would like http://localhost:57774/csp/msa/person as service location.

Adding a new entry via PUT on the service location. Sending the registry record as a content. On return the
complete entry with registry ID is expected.

Update via POST. The URL is complete with the registry ID of the entry to be updated. The attributes to be updated
are sent as form data.

GET is used to retrieve data. If the URL path ends with an ID, than the registry entry identified by the ID is returned.
If no ID found but there is a query in the URL, than a list of IDs is returned. For example
http://localhost:57774/csp/msa/person/12A33 returns the entry 12A33. The query key value pairs are the attribute
matching clauses used internally for selecting the entries. For example
http://localhost:57774/csp/msa/person?name=Hahn%20Istvan&dob=1961 returns a list of persons who was born in
1961 with the name Hahn Istvan.

DELETE does delete.

POST to http://localhost:57774/csp/msa/person/_init will initialize the registry.

POST to http://localhost:57774/csp/msa/person/_populate/100 loads 100 of test entries.

API Documentation
The following section gives an example how the service API could be documented. Please remember, that neither
the structure nor the contents are standardized. It is just an example.

I tried to make the documentation “tool agnostic”. There are documentation tools on the market. Some of them do
their job almost as good as it ought to be. The intent of this section is to give you a feeling what the complexity of
an API documentation is if you do it with a text editor.

Resource: person

Page 2 of 14

http://localhost:57774/csp/msa/person
http://localhost:57774/csp/msa/person/12A33
http://localhost:57774/csp/msa/person?name=Hahn%20Istvan&dob=1961
http://localhost:57774/csp/msa/person/_init
http://localhost:57774/csp/msa/person/_populate/100

RESTful API
Published on InterSystems Developer Community (https://community.intersystems.com)

A generic service to manage person type resources. The person has a minimum set of attributes. Basically
demographics and a registry ID.

Location: http://localhost:57774/csp/msa/person

Method:

Get a single resource based on the unique ID of the resource.

Verb: GET

Parameters:
Name Type Data type Comment

1 Path Resource ID Unique ID of the resource to be retrieved.

Response:
Status Return type Comment

200 Person Record found.

204 None No record with Resource ID exists.

401 None Unauthorized access. The resource needs user credential in the header.

403 None Forbidden. User is not authorized to access the resource.

500 Error Internal server error.

501 Error Requested method is not implemented.

503 Error Service is temporarily unavailable.

Method:

Get a list of matching resource IDs based on non-unique query. The method uses the query part to build the query
string. The query key/ value pairs are translated to column name/ value pairs.

Verb: GET

Parameters:
Name Type Data type Comment

name query string Search criteria.

motherMaidenNam
e

Query String

dob Query Date

birthPlaceCounty Query String

birthPlaceCity Query string

Page 3 of 14

http://localhost:57774/csp/msa/person

RESTful API
Published on InterSystems Developer Community (https://community.intersystems.com)

Response:
Status Return type Comment

200 Person Record found.

204 None No matching record.

401 None Unauthorized access. The resource needs user credential in the header.

403 None Forbidden. User is not authorized to access the resource.

500 Error Internal server error.

501 Error Requested method is not implemented.

503 Error Service is temporarily unavailable.

Method:

Delete an entry from the registry.

Verb: DELETE

Parameters:
Name Type Data type Comment

1 path string Unique registry ID.

Response:
Status Return type Comment

200 Person Record deleted.

401 None Unauthorized access. The resource needs user credential in the header.

403 None Forbidden. User is not authorized to access the resource.

500 Error Internal server error.

501 Error Requested method is not implemented.

503 Error Service is temporarily unavailable.

Method:

Add or update an entry to the registry.

Page 4 of 14

RESTful API
Published on InterSystems Developer Community (https://community.intersystems.com)

Verb: PUT

Parameters:
Name Type Data type Comment

None content JSON An object serialized to JSON format.

Response:
Status Return type Comment

200 Person The entry with the generated resource ID either newly add or updated by
the registry service.

401 None Unauthorized access. The resource needs user credential in the header.

403 None Forbidden. User is not authorized to access the resource.

500 Error Internal server error.

501 Error Requested method is not implemented.

503 Error Service is temporarily unavailable.

Method:

Update individual attributes of a registry entry.

Verb: POST

Parameters:
Name Type Data type Comment

1 Path String The resource ID of the entry to be updated.

name Form string New value of the attribute

motherMaidenName Form String

dob Form Date

birthPlaceCounty Form String

birthPlaceCity Form string

Response:
Status Return type Comment

200 Person Record updated.

204 None No record with Resource ID exists.

Page 5 of 14

RESTful API
Published on InterSystems Developer Community (https://community.intersystems.com)

401 None Unauthorized access. The resource needs user credential in the header.

403 None Forbidden. User is not authorized to access the resource.

500 Error Internal server error.

501 Error Requested method is not implemented.

503 Error Service is temporarily unavailable.

Method:

Initialize the registry.

Verb: POST

Parameters:
Name Type Data type Comment

_init Path

Response:
Status Return type Comment

200 None Initialized.

401 None Unauthorized access. The resource needs user credential in the header.

403 None Forbidden. User is not authorized to access the resource.

500 Error Internal server error.

501 Error Requested method is not implemented.

503 Error Service is temporarily unavailable.

Method:

Populate test data.

Verb: POST

Parameters:
Name Type Data type Comment

_populate Path

2 Path Numeric Number of entries to be populated.

Page 6 of 14

RESTful API
Published on InterSystems Developer Community (https://community.intersystems.com)

Response:
Status Return type Comment

200 None Initialized.

401 None Unauthorized access. The resource needs user credential in the header.

403 None Forbidden. User is not authorized to access the resource.

500 Error Internal server error.

501 Error Requested method is not implemented.

503 Error Service is temporarily unavailable.

Data structures:

Person
Name Type Flag Comment

ID RegistryID R Generated registry ID.

Name String R Name of the person in the person’s
native language form.

DOB Date R Date of birth.

BirthPlace BirthPlace O Birth place.

MotherMaidenName String O Mother’s maiden name.

BirthPlace
Name Type Flag Comment

Country String O Country code.

City String R City name

Error
Name Type Flag Comment

Code String R Error code

Text String O Error text

Page 7 of 14

RESTful API
Published on InterSystems Developer Community (https://community.intersystems.com)

Name Type Flag Comment

InnerError Error O An inner error reported by the
subcomponent of the reporting
component.

Implementation
The following section gives an example for the resource registry we discussed earlier. This is (again) just an
example.

To make you understand easier, I group the source in an artificial way.

n Everything belonging to the API is squeezed into the resource map class.

n The complete UrlMap XData block is sliced into single Route entries.

n Each entry is glued to the static method actually implementing the functionality.

So to recover the true class needs some (re-)engineering. Please, happy (re-)engineering!

The first service method is the query…

<!-- Query the registry. The URL query part holds select criteria. -->

<Route Url="/:service" Method="GET" Call="QueryRegistry"/>

classmethod QueryRegistry(service) as %Status {

 try {

 set serviceInstance = ..getServiceInstance(service)

 do
 ..dumpResponse(serviceInstance.runQuery(..getQueryParameters($listbuild("name","dob"
,"motherMaidenName","birthPlaceCountry","birthPlaceCity"))))

 }

 catch ex {

 do ..ReportHttpStatusCode(..getHTTPStatusCode(ex),ex.AsStatus())

 }

 quit $$$OK

}

Page 8 of 14

RESTful API
Published on InterSystems Developer Community (https://community.intersystems.com)

<!-- Get a single entry -->

<Route Url="/:service/:registryID" Method="GET" Call="GetEntry"/>

classmethod GetEntry(service,registryID) as %Status {

 try {

 set serviceInstance = ..getServiceInstance(service)

 do ..dumpResponse(serviceInstance.get(registryID))

 }

 catch ex {

 do ..ReportHttpStatusCode(..getHTTPStatusCode(ex),ex.AsStatus())

 }

 quit $$$OK

}

<!-- Delete a single entry -->

<Route Url="/:service/:registryID" Method="DELETE" Call="DeleteEntry"/>

classmethod DeleteEntry(service,registryID) as %Status {

 try {

 set serviceInstance = ..getServiceInstance(service)

 do ..dumpResponse(serviceInstance.delete(registryID))

 }

 catch ex {

 do ..ReportHttpStatusCode(..getHTTPStatusCode(ex),ex.AsStatus())

 }

 quit $$$OK

}

Page 9 of 14

RESTful API
Published on InterSystems Developer Community (https://community.intersystems.com)

<!-- Utility method to initialize the registry. -->

<Route Url="/:service/_init" Method="POST" Call="InitializeRegistry"/>

classmethod InitializeRegistry(service) as %Status {

 try {

 set serviceInstance = ..getServiceInstance(service)

 do ..dumpResponse(serviceInstance.init())

 }

 catch ex {

 do ..ReportHttpStatusCode(..getHTTPStatusCode(ex),ex.AsStatus())

 }

 quit $$$OK

}

<!-- Utility method to populate test data. -->

<Route Url="/:service/_populate/:numberOfRecords" Method="POST" Call="Populate"/>

classmethod Populate(service,numberOfRecords) as %Status {

 try {

 set serviceInstance = ..getServiceInstance(service)

 do ..dumpResponse(serviceInstance.populate(numberOfRecords))

 }

 catch ex {

 do ..ReportHttpStatusCode(..getHTTPStatusCode(ex),ex.AsStatus())

 }

 quit $$$OK

}

Page 10 of 14

RESTful API
Published on InterSystems Developer Community (https://community.intersystems.com)

<!-- Update individual attributes of a registry entry. -->

<Route Url="/:service/:registryID" Method="POST" Call="UpdateAttribute"/>

classmethod UpdateAttribute(service,registryID) as %Status {

 try {

 set serviceInstance = ..getServiceInstance(service)

 do
 ..dumpResponse(serviceInstance.updateAttribute(registryID, ..getFormParameters($list
build("name","dob","motherMaidenName","birthPlaceCountry","birthPlaceCity"))))

 }

 catch ex {

 do ..ReportHttpStatusCode(..getHTTPStatusCode(ex),ex.AsStatus())

 }

 quit $$$OK

}

<!-- Add a new or update an existing registry entry. -->

<Route Url="/:service" Method="PUT" Call="AddOrUpdate"/>

classmethod AddOrUpdate(service) as %Status {

 try {

 set serviceInstance = ..getServiceInstance(service)

 do
 ..dumpResponse(serviceInstance.addOrUpdate(..getContentParameter()))

 }

 catch ex {

 do ..ReportHttpStatusCode(..getHTTPStatusCode(ex),ex.AsStatus())

 }

Page 11 of 14

RESTful API
Published on InterSystems Developer Community (https://community.intersystems.com)

 quit $$$OK

}

Now this is time to share you the utility methods.

classmethod getServiceInstance(serviceName) as Ens.BusinessService {

 set
 status = ##class(Ens.Director).CreateBusinessService(serviceName, .instance)

 throw:$$$ISERR(status) ##class(NoProduction).%New(status)

 quit instance

}

classmethod getHTTPStatusCode(ex) {

 quit $case(ex.%ClassName(1),

 ##class(NoProduction).%ClassName(1) :5
03,

 ##class(NotImplemented).%ClassName(1) :501,

 :500)

}

classmethod dumpResponse(responseObject) {

 if $isObject(responseObject) {

 if
 responseObject.%Ex
tends(##class(%DynamicObject).%ClassName(1)) { write responseObject.%ToJSON() }

 elseif
 responseObject.%Extends(##class(%ZEN.proxyObject).%ClassName(1)) {

 do
 ##class(%ZEN.Auxiliary.jsonProvider).%ObjectToJSON(responseObject)

 }

 elseif responseObject.%Extends(##class(%XML.Adaptor).%ClassName(1)) {

Page 12 of 14

RESTful API
Published on InterSystems Developer Community (https://community.intersystems.com)

 do responseObject.XMLExportToString(.ret)

 write ret

 }

 else { throw ##class(Serialization).%New() }

 }

 else {

 write responseObject

 }

}

classmethod getQueryParameters(parameterList) as %DynamicObject {

 set parameterObject = {}

 for i=1:1:$listlength(parameterList) {

 set parameterName=$listget(parameterList,i)

 set
 $property(parameterObject, parameterName) = %request.Get(parameterName)

 }

 quit parameterObject

}

classmethod getFormParameters(parameterList,queryObject) as %DynamicObject {

 if $data(queryObject) { set parameterObject = queryObject }

 else { set parameterObject = {} }

 for i=1:1:$listlength(parameterList) {

 set parameterName=$listget(parameterList,i)

 set
 $property(parameterObject, parameterName) = %request.Get(parameterName)

 }

 quit parameterObject

Page 13 of 14

RESTful API
Published on InterSystems Developer Community (https://community.intersystems.com)

}

classmethod getContentParameter() as %DynamicObject {

 quit {}.%FromJSON(%request.Content)

}

And this is the end. We finished designing(?), implementing and documenting a RESTful Web Service API.

Stay tuned, I’ll be back soon with further reading on Ensemble RESTful web services. The next is “Creating an
Ensemble MicroService using RESTful Web Services”.

#Beginner #REST API #Ensemble

 Source URL:https://community.intersystems.com/post/restful-api

Page 14 of 14

https://community.intersystems.com/tags/beginner
https://community.intersystems.com/tags/rest-api
https://community.intersystems.com/tags/ensemble
https://community.intersystems.com/post/restful-api

