
RESTful Exception Handling
Published on InterSystems Developer Community (https://community.intersystems.com)

 Article
 Istvan Hahn · Oct 6, 2016 4m read

RESTful Exception Handling
A beginner’s guide to Exception Handling in RESTful web services. The article gives an example how the various
error conditions during processing a service request can be handled.

We expect our client ‒ server communication working in a flawless operational condition, running error free
software. But we are prepared to handle exceptions. Are we? So far in the examples of the previous sessions were
not. We did not care about exceptions. The result? In any error incident it took ages to figure out what the problem
is and more importantly how to fix it.

Remember, REST leans on HTTP. HTTP explicitly defines how error conditions must be handled. HTTP requires to
return a status in the response header and optionally supplement it by a human or robot readable error explanation
in the message body. RESTful communication is not different.

When an exception caught at server side, which prevents the server to serve the client request fully, an error
condition has to be reported. Reporting means setting the HTTP response status to other than 200 (OK), and dump
details into the message body. It is also possible that the status code tells that the response is incomplete (206)
and the body contains the fragment available. Or in other situation when the service processes the request
asynchronously for the initial communication the server might return 202 (Accepted). Or as in the example class,
when Ensemble fails to create the Business Service instance it returns 503 (Service is unavailable).

The next example is a variant of our ResourceMap class. We created that during the “Creating RESTful Web
Service in Ensemble” or any later session. What it does is basically the following.

The UrlMap is a jump table. It defines which static class method is to be called on receiving a request with
an URL patch matching a pattern.
The static method InvokeEnsembleService calls the service and dumps the response to the HTTP message
body.

The real new in the source is the “try-catch” decoration. To those who are mostly COS programmers: it is a
beginner’s guide. I do not want to dispute neither programming styles nor performance of particular techniques.

Class h2.createrestfulservice.ResourceMap Extends %CSP.REST
{

///
/// The UrlMap determines how a Url should map to a HTTP Method and a Target ClassMet
hod
/// indicated by the 'Call' attribute. The call attribute is either the name of a met
hod
/// or the name of a class and method seperated by a ':'. Parameters within the URL p
receded
/// by a ':' will be extracted from the supplied URL and passed as arguments to the n
amed method.
///
/// In this Route Entry GET requests to /class/namespace/classname will call the GetC
lass method
///
/// <Route Url="/class/:namespace/:classname" Method="GET" Call="GetClass"/>

Page 1 of 3

https://community.intersystems.com/user/istvan-hahn

RESTful Exception Handling
Published on InterSystems Developer Community (https://community.intersystems.com)

///
XData UrlMap [XMLNamespace = "http://www.intersystems.com/urlmap"]
{
<Routes>
 <Route Url="/:service" Method="GET" Call="InvokeEnsembleService"/>
 <Route Url="/:service/:p1" Method="GET" Call="InvokeEnsembleService"/>
 <Route Url="/:service/:p1/:p2" Method="GET" Call="InvokeEnsembleService"/>
 <Route Url="/:service" Method="PUT" Call="InvokeEnsembleService"/>
</Routes>
}

ClassMethod InvokeEnsembleService(service, argv...) As %Status
{
 try {
 set status = ##class(Ens.Director).CreateBusinessService(service, .instace)
 throw:$$$ISERR(status) ##class(NoProduction).%New()
 #dim response as %DynamicObject
 set status = instace.ProcessInput(.argv, .response)
 throw:$$$ISERR(status) ##class(%Exception.StatusException).%New(status)
 throw:'$data(response) ##class(NoResponse).%New()
 if $isObject(response) {
 if
 response.%Extends(##clas
s(%DynamicObject).%ClassName(1)) { write response.%ToJSON() }
 elseif response.%Extends(##class(%ZEN.proxyObject).%ClassName(1)) {
 do ##class(%ZEN.Auxiliary.jsonProvider).%ObjectToJSON(response)
 }
 elseif response.%Extends(##class(%XML.Adaptor).%ClassName(1)) {
 do response.XMLExportToString(.ret)
 write ret
 }
 else { throw ##class(Serialization).%New() }
 }
 else {
 write response
 }
 }
 catch ex {
 set httpErrorCode = $case(ex.%ClassName(1),
 ##class(h2.createrestfulservice.NoProduction).%ClassName(1):503,
 :500)
 do ..ReportHttpStatusCode(httpErrorCode,ex.AsStatus())
 }
 quit $$$OK
}

}

If you are over with reading you might recognize that there are three custom exceptions. Please find the code of
them right below.

Class h2.createrestfulservice.Serialization extends %Exception.AbstractException {

Method OnAsStatus() as %Status
{
 quit $$$ERROR(5001,"No known serialization method")

Page 2 of 3

RESTful Exception Handling
Published on InterSystems Developer Community (https://community.intersystems.com)

}

}

Class h2.createrestfulservice.NoProduction extends %Exception.AbstractException {

Method OnAsStatus() as %Status
{
 quit $$$ERROR(5001,"Production is down")
}

}

Class h2.createrestfulservice.NoResponse extends %Exception.AbstractException {

Method OnAsStatus() as %Status
{
 quit $$$ERROR(5001,"No response is received")
}

}

As you expect Ensemble Business Operations using EnsLib.HTTP.OutboundAdapter are catching return status
other then 200 (OK). That allows to stay with the standard error handling inside Ensemble at the service consumer
side. There is no real need for Business Operation example. Any of those created during any earlier session is just
fine.

Stay tuned, I’ll be back soon with further reading on Ensemble RESTful web services. The next is “RESTful API”.

#Beginner #Error Handling #REST API #Ensemble

 Source URL:https://community.intersystems.com/post/restful-exception-handling

Page 3 of 3

https://community.intersystems.com/tags/beginner
https://community.intersystems.com/tags/error-handling
https://community.intersystems.com/tags/rest-api
https://community.intersystems.com/tags/ensemble
https://community.intersystems.com/post/restful-exception-handling

