
ASP.NET Identity Caché Provider ̶ working with Identity via InterSystems Caché
Published on InterSystems Developer Community (https://community.intersystems.com)

        Article      
 Maxim Yerokhin  · Sep 21, 2016  7m read   
   
  

ASP.NET Identity Caché Provider ̶ working with Identity via
InterSystems Caché
Imagine that your .NET project uses the Caché DBMS and you need a fully-functional and reliable authorization
system. Writing such a system from scratch would not make much sense, and you will clearly want to use
something that already exists in .NET, e.g. ASP.NET Identity. By default, however, this framework supports only its
native DBMS ‒ MS SQL. Our task was to create an adaptor that would let us quickly and easily port Identity to the
InterSystems Caché DBMS. This work resulted in creation of the ASP.NET Identity Caché Provider.

MSSQL is the default data provider for ASP.NET Identity, but since Identity’s authorization system can interact with
any other relational DBMS, we implemented this functionality for InterSystems Caché.

The goal of the ASP.NET Identity Caché Provider project was to implement a Caché data provider that would work
with ASP.NET Identity. The main task was to store and provide access to such tables as AspNetRoles,
AspNetUserClaims, AspNetUserLogins, AspNetUserRoles and AspNetUsers without breaking the standard
workflows involving these tables.

 

Let’s take a look at the implementation of the Caché data provider for ASP.NET Identity. It had two phases:

Implementation of data storage classes (that will be responsible for storing state data) and the 
IdentityDbContext class that encapsulates all low-level logic for interaction with the data storage. We also

Page 1 of 5

https://community.intersystems.com/user/maxim-yerokhin


ASP.NET Identity Caché Provider ̶ working with Identity via InterSystems Caché
Published on InterSystems Developer Community (https://community.intersystems.com)

implemented the IdentityDbInitializer class that adapts the Caché database for working with Identity.
Implementation of the UserStore and RoleStore classes (along with integration tests). A demo project.

 

During the first stage, the following classes were implemented:

IdentityUser ̶ implementation of the IUser interface.
IdentityUserRole ̶ an associative entity for the User‒Role pair.
IdentityUserLogin ̶ user login data.

 

Extendable version of the UserLoginInfo class.

IdentityUserClaim ̶information about the user’s claims.
IdentityDbContext<TUser, TRole, TKey, TUserLogin, TUserRole, TUserClaim> ̶ context of the Entity
Framework database.

Let’s take a look at the IdentityUser entity more detailed. It is a storage for users, roles, logins, claims and user-role
relations. Below there is an example of a regular and generalized variant of IdentityUser.

 

namespace InterSystems.AspNet.Identity.Cache
{
    /// <summary>
    /// IUser implementation
    /// </summary>
    public class IdentityUser : IdentityUser<string, IdentityUserLogin, IdentityUserR
ole, IdentityUserClaim>, IUser
    {
        /// <summary>
        /// Constructor which creates a new Guid for the Id
        /// </summary>
        public IdentityUser()
        {
            Id = Guid.NewGuid().ToString();
        }

        /// <summary>
        /// Constructor that takes a userName
        /// </summary>
        /// <param name="userName"></param>
        public IdentityUser(string userName)
            : this()
        {
            UserName = userName;
        }
    }

    /// <summary>
    /// IUser implementation
    /// </summary>
    /// <typeparam name="TKey"></typeparam>
    /// <typeparam name="TLogin"></typeparam>

Page 2 of 5

https://msdn.microsoft.com/en-us/library/microsoft.aspnet.identity.iuser(v=vs.108).aspx
https://msdn.microsoft.com/en-us/library/microsoft.aspnet.identity.userlogininfo(v=vs.108).aspx


ASP.NET Identity Caché Provider ̶ working with Identity via InterSystems Caché
Published on InterSystems Developer Community (https://community.intersystems.com)

    /// <typeparam name="TRole"></typeparam>
    /// <typeparam name="TClaim"></typeparam>
    public class IdentityUser<TKey, TLogin, TRole, TClaim> : IUser<TKey>
        where TLogin : IdentityUserLogin<TKey>
        where TRole : IdentityUserRole<TKey>
        where TClaim : IdentityUserClaim<TKey>
    {
        /// <summary>
        ///     Constructor
        /// </summary>
        public IdentityUser()
        {
            Claims = new List<TClaim>();
            Roles = new List<TRole>();
            Logins = new List<TLogin>();
        }

        /// <summary>
        /// Email
        /// </summary>
        public virtual string Email { get; set; }

 

Special objects called Roles are intended for access rights restrictions in Identity. A role in the configuration can
correspond to job positions or types of activities of various user groups.

 

namespace InterSystems.AspNet.Identity.Cache
{
    /// <summary>
    /// EntityType that represents a user belonging to a role
    /// </summary>
    public class IdentityUserRole : IdentityUserRole<string>
    {
    }

    /// <summary>
    /// EntityType that represents a user belonging to a role
    /// </summary>
    /// <typeparam name="TKey"></typeparam>
    public class IdentityUserRole<TKey>
    {
        /// <summary>
        /// UserId for the user that is in the role
        /// </summary>
        public virtual TKey UserId { get; set; }

        /// <summary>
        /// RoleId for the role
        /// </summary>
        public virtual TKey RoleId { get; set; }
    }
}

 

Page 3 of 5



ASP.NET Identity Caché Provider ̶ working with Identity via InterSystems Caché
Published on InterSystems Developer Community (https://community.intersystems.com)

IdentityDbContext is an instance that encapsulates the creation of a connection, loading of entities from a
database, validation of user’s objects conformity to the structure of associated tables and field values. Let’s use the
OnModelCreating as an example ‒ this method validates tables according to Identity requirements.

 

protected override void OnModelCreating(DbModelBuilder modelBuilder)
{
        // Mapping and configuring identity entities according to the Cache tables
        var user = modelBuilder.Entity<TUser>()
           .ToTable("AspNetUsers");
            user.HasMany(u => u.Roles).WithRequired().HasForeignKey(ur => ur.UserId);
            user.HasMany(u => u.Claims).WithRequired().HasForeignKey(uc => uc.UserId)
;
            user.HasMany(u => u.Logins).WithRequired().HasForeignKey(ul => ul.UserId)
;
            user.Property(u => u.UserName)
                .IsRequired()
                .HasMaxLength(256)
                .HasColumnAnnotation("Index", new IndexAnnotation(new IndexAttribute(
"UserNameIndex") { IsUnique = true }));

            user.Property(u => u.Email).HasMaxLength(256);
            modelBuilder.Entity<TUserRole>()
                .HasKey(r => new { r.UserId, r.RoleId })
                .ToTable("AspNetUserRoles");

            modelBuilder.Entity<TUserLogin>()
                .HasKey(l => new { l.LoginProvider, l.ProviderKey, l.UserId })
                .ToTable("AspNetUserLogins");

            modelBuilder.Entity<TUserClaim>()
                .ToTable("AspNetUserClaims");

            var role = modelBuilder.Entity<TRole>()
                .ToTable("AspNetRoles");

            role.Property(r => r.Name)
                .IsRequired()
                .HasMaxLength(256)
                .HasColumnAnnotation("Index", new IndexAnnotation(new IndexAttribute(
"RoleNameIndex") { IsUnique = true }));

            role.HasMany(r => r.Users).WithRequired().HasForeignKey(ur => ur.RoleId);
}

 

DbModelBuilder is used for comparing CLR classes with the database schema. This code-oriented approach to
build an EDM model is called Code First. DbModelBuilder is typically used for configuring the model by means of
redefining OnModelCreating(DbModelBuilder). However, DbModelBuilder can also be used independently from 
DbContext for model creation and subsequent design of DbContext or ObjectContext.

 

The IdentityDbInitializer class prepares the Caché database for using Identity.

Page 4 of 5



ASP.NET Identity Caché Provider ̶ working with Identity via InterSystems Caché
Published on InterSystems Developer Community (https://community.intersystems.com)

 

public void InitializeDatabase(DbContext context)
{
     using (var connection = BuildConnection(context))
     {
           var tables = GetExistingTables(connection);
           CreateTableIfNotExists(tables, AspNetUsers, connection);
           CreateTableIfNotExists(tables, AspNetRoles, connection);
           CreateTableIfNotExists(tables, AspNetUserRoles, connection);
           CreateTableIfNotExists(tables, AspNetUserClaims, connection);
           CreateTableIfNotExists(tables, AspNetUserLogins, connection);
           CreateIndexesIfNotExist(connection);
      }
}

 

CreateTableIfNotExists method creates the necessary tables if they don't exist. Table existence checks are
performed by running a query against the Cache ‒ Dictionary.CompiledClass table that stores information about
existing tables. If the table doesn't exist, it will be created.

 

On the second stage, IdentityUserStore and IdentityRoleStore instances were created. They encapsulate the logic
of adding, editing and removing users and roles. These entities required 100% unit-test coverage.

 

Let's draw the bottom line: we created a data provider that allows the Caché DBMS to work with Entity Framework
within the context of the ASP.NET Identity technology. The app is packed into a separate Nuget package, so if you
need to work with the Caché DBMS and use standard Microsoft authorization, all you need to do is to add the
Identity Caché Provider build into your project via Nuget Package Manager.

 

The source code of the project, along with samples and documentation, is available on GitHub.

#.NET #Authentication #Access control #Caché  
 

    Source
URL:https://community.intersystems.com/post/aspnet-identity-cach%C3%A9-provider-%E2%80%94-working-
identity-intersystems-cach%C3%A9 

Page 5 of 5

https://github.com/intersystems-ru/identity_cache
https://community.intersystems.com/tags/net
https://community.intersystems.com/tags/authentication
https://community.intersystems.com/tags/access-control
https://community.intersystems.com/tags/cach%C3%A9
https://community.intersystems.com/post/aspnet-identity-cach%C3%A9-provider-%E2%80%94-working-identity-intersystems-cach%C3%A9
https://community.intersystems.com/post/aspnet-identity-cach%C3%A9-provider-%E2%80%94-working-identity-intersystems-cach%C3%A9

