
These Are NOT Identical Twins: the Class Keywords DependsOn and CompileAfter
Published on InterSystems Developer Community (https://community.intersystems.com)

 Article
 Joel Solon · Sep 6, 2016 3m read

These Are NOT Identical Twins: the Class Keywords DependsOn and
CompileAfter
In most cases, if one class depends on another, the class compiler will detect this and determine the correct
compilation order. For example:

Compiling a superclass triggers compilation of its subclasses.
Compiling a custom datatype class triggers compilation of any classes with a property of that type.

Yet sometimes, a developer needs to specify compilation order. InterSystems class definitions contain two
keywords for this, DependsOn and CompileAfter, that are very similar but not identical. They are useful during
development, and also when importing and compiling a set of classes for the first time.

The documentation for these keywords is here:

http://docs.intersystems.com/latest/csp/docbook/DocBook.UI.Page.cls?KEY=...
http://docs.intersystems.com/latest/csp/docbook/DocBook.UI.Page.cls?KEY=...

Here's how the keywords look in a class definition:

Class Test.B [DependsOn = Test.A]
Class Test.D [CompileAfter = Test.C]

When you compile Test.B, if Test.A has been changed and saved but not compiled, the compiler automatically
adds Test.A to the list of classes to compile, and compiles class Test.A before class Test.B. The same thing
happens when compiling Test.D: Test.C is compiled before Test.D.

So what's the difference between them? To understand the difference, you must first understand that the compiler
is responsible for compilation (checking class for errors, resolving inheritance, and so on) and generating code.

Using DependsOn, the compiler compiles and generates code for Test.A before compiling and generating
code for Test.B. This is necessary when Test.B calls code in Test.A at compile time. The documentation
refers to this as making Test.A runnable before compiling Test.B.
Using CompileAfter, the compiler compiles Test.C before Test.D, but it can generate the code for these
classes in any order.

As you can see, DependsOn encompasses CompileAfter.

Let's look at some examples. If you have your own examples to share, please do so in the comments.

Example #1. Test.B depends on Test.A. The value of the STRING parameter is computed at compile time by
calling Test.A and accessing its TEXT parameter. When Test.B is compiled (even if compiled alone), the compiler
compiles Test.A and generates the code for it, and then compiles and generates code for Test.B. Note that
changing Test.A and compiling it does not trigger compilation of Test.B.

Page 1 of 3

https://community.intersystems.com/user/joel-solon
http://docs.intersystems.com/latest/csp/docbook/DocBook.UI.Page.cls?KEY=ROBJ_class_dependson
http://docs.intersystems.com/latest/csp/docbook/DocBook.UI.Page.cls?KEY=ROBJ_class_compileafter

These Are NOT Identical Twins: the Class Keywords DependsOn and CompileAfter
Published on InterSystems Developer Community (https://community.intersystems.com)

Class Test.A
{
Parameter TEXT = "this is some text";
}

Class Test.B [DependsOn = Test.A]
{
Parameter STRING = {##class(Test.A).#TEXT};

ClassMethod M1()
{
 write ..#STRING, !
}
}

Example #2. Test.D should be compiled after Test.C. If Test.D is compiled (even if compiled alone), the compiler
will compile Test.C and then Test.D. Later, when a Test.D object is created, the constructor can safely call the M2()
method to initialize the value for the Test property. As before, note that changing Test.C and compiling it does
not trigger compilation of Test.D.

Class Test.C
{
ClassMethod M2() as %Integer
{
 return 4
}
}

Class Test.D extends %Persistent [CompileAfter = Test.C]
{
Property Test As %Integer [InitialExpression = {##class(Test.C).M2()}];
}

Example #3. Test.F should be compiled after Test.E. Test.F contains embedded SQL that references columns from
the Test.E table. If Test.F is compiled (even if compiled alone), the compiler will compile Test.E and then Test.F.
This example is a little different than the first two because embedded SQL dependency is stored. So you
could remove the CompileAfter keyword after the first time you compile these two classes, and they would continue
to compile in the correct order. But including it guarantees that if these two classes are imported and compiled on
another system, they will always compile in the correct order.

Class Test.E extends %Persistent
{
Property Name as %String;

Property Phone as %String;
}

Class Test.F [CompileAfter = Test.E]
{
ClassMethod M3()
{
 &sql(select Name, Phone into :nm, :ph from Test.E)
 write !, nm, " ", ph
}
}

Page 2 of 3

These Are NOT Identical Twins: the Class Keywords DependsOn and CompileAfter
Published on InterSystems Developer Community (https://community.intersystems.com)

#Compiler #Object Data Model #Caché

 Source
URL:https://community.intersystems.com/post/these-are-not-identical-twins-class-keywords-dependson-and-
compileafter

Page 3 of 3

https://community.intersystems.com/tags/compiler
https://community.intersystems.com/tags/object-data-model
https://community.intersystems.com/tags/cach%C3%A9
https://community.intersystems.com/post/these-are-not-identical-twins-class-keywords-dependson-and-compileafter
https://community.intersystems.com/post/these-are-not-identical-twins-class-keywords-dependson-and-compileafter

