
JSON changes in Caché 2016.2
Published on InterSystems Developer Community (https://community.intersystems.com)

 Announcement
 Stefan Wittmann · Aug 25, 2016

JSON changes in Caché 2016.2
As Bill has mentioned earlier in his post, we have carefully reviewed the JSON capabilities and made some
adjustments to ensure they deliver the best benefit to you. In this post, I am going to describe the modifications in
more detail and provide guidance for you to understand the implication for your code base.

1) Class name changes

We felt the naming of %Object and %Array was too generic and that's why we are renaming them. %Object is now
named %DynamicObject and %Array is now named %DynamicArray. If you are using the object initialization syntax
(curly braces and square brackets) to initialize your objects and arrays you are unaffected by this change. If you
have used the class name directly, for example:

set object = ##class(%Object).$new()
set array = ##class(%Array).$new()
set json = ##class(%Object).$fromJSON(someJSONstring)

use the new class name instead:

set dynamicObject = ##class(%DynamicObject).$new()
set dynamicArray = ##class(%DynamicArray).$new()
set json = ##class(%DynamicObject).$fromJSON(someJSONstring)

2) System methods

System methods have been completely removed from the product. All system methods that have been introduced
in Caché 2016.1 are now present as regular methods starting with a leading "%" (percent) character followed by an
uppercase letter. Here is a simple example: The above system class method $fromJSON has been converted to a
regular class method named %FromJSON.

This is how the above code snippet has to be changed to work in Caché 2016.2:

set dynamicObject = ##class(%DynamicObject).%New()
set dynamicArray = ##class(%DynamicArray).%New()
set json = ##class(%DynamicObject).%FromJSON(someJSONstring)

3) Object initialization

The object initialization is one of the great additions to the JSON capabilities. While we worked with some of our
customers we identified two pieces that required a revision. I want to make sure we are all talking about the same
thing, so here is a little example of an object initialization for a dynamic object:

set myObject = {

Page 1 of 3

https://community.intersystems.com/user/stefan-wittmann
https://community.intersystems.com/post/announcement-about-cach%C3%A9-20162-and-20163-field-test-programs

JSON changes in Caché 2016.2
Published on InterSystems Developer Community (https://community.intersystems.com)

"a string":"this is a ""quoted"" string",
"version":$zv,
"sum":1+2
}

The first change is that all value expressions have to be enclosed in parenthesis. There were some cases where it
was ambiguous what the developer meant and we are correcting this. As a result, you have to enclose the values
for the keys "version" and "sum" in parenthesis from now on.

The second change is that all literal values will be evaluated as JSON syntax and not as Caché Object Script
literals. We want the object initialization to be a great tool to make it easy for you to create dynamic JSON content.
The above example includes a string literal that is escaped by Caché Object Script syntax. From now on you have
to escape a double quote with a backward slash. If you really want to use Caché Object Script escaping, you can
enclose a string with parenthesis.

Here is the above example reworked for Caché 2016.2:

set myObject = {
"a string":"this is a \"quoted\" string",
"version":($zv),
"sum":(1+2)
}

Here is another alternative, enclosing the string with parenthesis to enforce Caché Object Script evaluation:

set myObject = {
"a string":("this is a ""quoted"" string"),
"version":($zv),
"sum":(1+2)
}

4) Composition

The method $compose has been removed from Caché 2016.2. We strongly believe that the functionality to convert
between registered and dynamic objects is a critical piece to the JSON capabilities. Because of this, we want to
make sure the API fits our customer needs and we will be reworking the $compose method to make it easier to
use.

5) SQL changes

The JSON_TABLE function has been removed from Caché 2016.2. This originates from the removal of the
document data model. The other implemented JSON functions JSON_OBJECT and JSON_ARRAY remain
unimpacted.

Ben posted an article here, describing some guidelines we are using internally when you have to write forward
compatible code in Caché 2016.1.

If you have questions or concerns regarding this announcement, please feel free to post them on the Developer
Community or contact your Account Manager or Sales Engineer. You are also welcome to contact the Worldwide
Response Center (Support.InterSystems.com).

#Compatibility #JSON #SQL #Caché

Page 2 of 3

https://community.intersystems.com/post/writing-forward-compatible-json-20161
https://community.intersystems.com/tags/compatibility
https://community.intersystems.com/tags/json
https://community.intersystems.com/tags/sql
https://community.intersystems.com/tags/cach%C3%A9

JSON changes in Caché 2016.2
Published on InterSystems Developer Community (https://community.intersystems.com)

 Source URL:https://community.intersystems.com/post/json-changes-cach%C3%A9-20162

Page 3 of 3

https://community.intersystems.com/post/json-changes-cach%C3%A9-20162

