
On $Sequence function
Published on InterSystems Developer Community (https://community.intersystems.com)

 Article
 Alexander Koblov · Jul 29, 2016 10m read

On $Sequence function
In this article we are going to compare $Increment and $Sequence functions.

First of all, a note for readers who have never heard of $Increment. $Increment is a Caché ObjectScript function
which performs an atomic operation to increment its argument by 1 and return the resulting value. You can only
pass a global or local variable node as a parameter to $Increment, not an arbitrary expression. $Increment is
heavily used when assigning sequential IDs. In such cases parameter of $Increment is usually a global node.
$Increment guarantees that each process using it gets a unique ID.

for i=1:1:10000 {
 set Id = $Increment(^Person) ; new Id
 set surname = ##class(%PopulateUtils).LastName() ; random last name
 set name = ##class(%PopulateUtils).FirstName() ; random first name
 set ^Person(Id) = $ListBuild(surname, name)
}

The problem with $Increment is that if many processes are adding rows in parallel, these processes might spend
time waiting for their turn to atomically change value of global node that holds the ID ̶ ^Person in the sample
above

$Sequence is a new function that was designed to handle this problem. $Sequence is available since Caché
2015.1. Just like $Increment, $Sequence atomically increments value of its parameter. Unlike $Increment,
$Sequence will reserve some subsequent counter values for current process and during the next call in the same
process it will simply return the next value from the reserved range. $Sequence automatically calculates how many
values to reserve. More often process calls $Sequence, more values $Sequence reserves:

USER>kill ^myseq

USER>for i=1:1:15 {write "increment:",$Seq(^myseq)," allocated:",^myseq,! }
increment:1 allocated:1
increment:2 allocated:2
increment:3 allocated:4
increment:4 allocated:4
increment:5 allocated:8
increment:6 allocated:8
increment:7 allocated:8
increment:8 allocated:8
increment:9 allocated:16
increment:10 allocated:16
increment:11 allocated:16
increment:12 allocated:16
increment:13 allocated:16
increment:14 allocated:16
increment:15 allocated:16

When $Sequence(^myseq) returned 9, next 8 values (up to 16) were already reserved for current process. If other

Page 1 of 6

https://community.intersystems.com/user/alexander-koblov
http://docs.intersystems.com/latest/csp/docbook/DocBook.UI.Page.cls?KEY=RCOS_fincrement
http://docs.intersystems.com/latest/csp/docbook/DocBook.UI.Page.cls?KEY=RCOS_fsequence

On $Sequence function
Published on InterSystems Developer Community (https://community.intersystems.com)

process calls $Sequence, it would get value of 17, not 10.

$Sequence is designed for processes that simultaneously increment some global node. Since $Sequence reserve
values, IDs might have gaps if process does not use all of the values that were reserved. The main usage of
$Sequence is generation of sequential IDs. Compared with $Sequence, $Increment is more generic function.

Let’s compare performance of $Increment and $Sequence:

Class DC.IncSeq.Test
{

ClassMethod filling()
{
 lock +^P:"S"
 set job = $job
 for i=1:1:200000 {
 set Id = $Increment(^Person)
 set surname = ##class(%PopulateUtils).LastName()
 set name = ##class(%PopulateUtils).FirstName()
 set ^Person(Id) = $ListBuild(job, surname, name)
 }
 lock -^P:"S"
}

ClassMethod run()
{
 kill ^Person
 set z1 = $zhorolog
 for i=1:1:10 {
 job ..filling()
 }
 lock ^P
 set z2 = $zhorolog - z1
 lock
 write "done:",z2,!
}

}

Method run jobs off 10 processes, each inserting 200’000 records into ^Person global. To wait until child processes
will finish. method run tries to get exclusive lock on ^P. When child processes finish their job and release shared
lock on ^P, run will acquire an exclusive lock on ^P and continue execution. Right after this we record time from
$zhorolog system variable and calculate how much time it took to insert these records. My multi-core notebook with
slow HDD took 40 seconds (for science, I ran it several times before, so this was 5th run):

USER>do ##class(DC.IncSeq.Test).run()
done:39.198488

It’s interesting to drill down into these 40 seconds. By running ^%SYS.MONLBL we can see that total 100 seconds
were spent getting ID. 100 seconds / 10 processes = each process spent 10 seconds to acquire new ID, 1.7
second to get first name and last name, and 28.5 seconds to write data to data global.

First column in %SYS.MONLBL report below is line number, second is how many times this line was executed, and
third is how many seconds it took to execute this line.

Page 2 of 6

http://docs.intersystems.com/latest/csp/docbook/DocBook.UI.Page.cls?KEY=GCM_monlbl

On $Sequence function
Published on InterSystems Developer Community (https://community.intersystems.com)

 ; ** Source for Method 'filling' **
1 10 .001143 lock +^P:"S"
2 10 .000055 set job = $JOB
3 10 .000118 for i=1:1:200000 {
4 1998499 100.356554 set Id = $Increment(^Person)
5 1993866 10.409804 set surname = ##class(%PopulateUtils).LastName()
6 1990461 6.347832 set name = ##class(%PopulateUtils).FirstName()
7 1999762 285.54603 set ^Person(Id) = $ListBuild(job, surname, name)
8 1999825 3.393706 }
9 10 .000259 lock -^P:"S"
 ; ** End of source for Method 'filling' **
 ;
 ; ** Source for Method 'run' **
1 1 .005503 kill ^Person
2 1 .000002 set z1 = $zhorolog
3 1 .000002 for i=1:1:10 {
4 10 .201327 job ..filling()
5 0 0 }
6 1 43.472692 lock ^P
7 1 .00003 set z2 = $zhorolog - z1
8 1 .00001 lock
9 1 .000053 write "done:",z2,!
 ; ** End of source for Method 'run' **

Total time (43.47 seconds) is 4 seconds more than during previous run because of profiling.

Let’s replace one thing in our test code, in filling method. We will change $Increment(^Person) to
$Sequence(^Person) and run test again:

USER>do ##class(DC.IncSeq.Test).run()
done:5.135189

This result is surprising. Ok, $Sequence decreased time to get ID, but where did 28.5 seconds to store data in
global go? Let’s check ^%SYS.MONLBL:

 ; ** Source for Method 'filling' **
1 10 .001181 lock +^P:"S"
2 10 .000026 set job = $JOB
3 10 .000087 for i=1:1:200000 {
4 1802473 1.996279 set Id = $Sequence(^Person)
5 1784910 4.429576 set surname = ##class(%PopulateUtils).LastName()
6 1853508 3.829051 set name = ##class(%PopulateUtils).FirstName()
7 1838752 32.281624 set ^Person(Id) = $ListBuild(job, surname, name)
8 1951569 1.0243 }
9 10 .000219 lock -^P:"S"
 ; ** End of source for Method 'filling' **
 ;
 ; ** Source for Method 'run' **
1 1 .006514 kill ^Person
2 1 .000002 set z1 = $zhorolog
3 1 .000002 for i=1:1:10 {
4 10 .385055 job ..filling()
5 0 0 }
6 1 6.558119 lock ^P
7 1 .000011 set z2 = $zhorolog - z1

Page 3 of 6

On $Sequence function
Published on InterSystems Developer Community (https://community.intersystems.com)

8 1 .000008 lock
9 1 .000025 write "done:",z2,!
 ; ** End of source for Method 'run' **

Now, each process spends 0.2 seconds instead of 10 seconds for ID acquisition. What is not clear is why storing
data takes only 3.23 seconds per process? The reason is globals nodes are stored in data blocks, and usually
each block has size of 8192 bytes. Before changing global node value (like set ^Person(Id) = …), process locks the
whole block. If several processes are trying to change data inside of the same block at the same time, only one
process will be allowed to change the block and others will have to wait for it to finish.

Let’s look at global created using $Increment to generate new IDs. Sequential records would almost never have the
same process ID (remember -- we stored process ID as the first element of data list):

1: ^Person(100000) = $lb("12950","Kelvin","Lydia")
2: ^Person(100001) = $lb("12943","Umansky","Agnes")
3: ^Person(100002) = $lb("12945","Frost","Natasha")
4: ^Person(100003) = $lb("12942","Loveluck","Terry")
5: ^Person(100004) = $lb("12951","Russell","Debra")
6: ^Person(100005) = $lb("12947","Wells","Chad")
7: ^Person(100006) = $lb("12946","Geoffrion","Susan")
8: ^Person(100007) = $lb("12945","Lennon","Roberta")
9: ^Person(100008) = $lb("12944","Beatty","Mark")
10: ^Person(100009) = $lb("12946","Kovalev","Nataliya")
11: ^Person(100010) = $lb("12947","Klingman","Olga")
12: ^Person(100011) = $lb("12942","Schultz","Alice")
13: ^Person(100012) = $lb("12949","Young","Filomena")
14: ^Person(100013) = $lb("12947","Klausner","James")
15: ^Person(100014) = $lb("12945","Ximines","Christine")
16: ^Person(100015) = $lb("12948","Quine","Mary")
17: ^Person(100016) = $lb("12948","Rogers","Sally")
18: ^Person(100017) = $lb("12950","Ueckert","Thelma")
19: ^Person(100018) = $lb("12944","Xander","Kim")
20: ^Person(100019) = $lb("12948","Ubertini","Juanita")

Concurrent processes were trying to write data into the same block and were spending more time waiting than
actually changing data. Using $Sequence, IDs are generated in chunks, so different processes would most likely
use different blocks:

1: ^Person(100000) = $lb("12963","Yezek","Amanda")
// 351 records with process number 12963
353: ^Person(100352) = $lb("12963","Young","Lola")
354: ^Person(100353) = $lb("12967","Roentgen","Barb")

If this sample looks like something you are doing in your projects, consider using $Sequence instead of
$Increment. Of course, consult with documentation before replacing every occurrence of $Increment with
$Sequence.

And sure, don’t believe tests provided here -- double check this yourself.

Starting with Caché 2015.2, you can configure tables to use $Sequence instead of $Increment. There is a system
function $system.Sequence.SetDDLUseSequence for that, and the same option is available from SQL Settings in
Management Portal.

Also, there is new storage parameter in class definition -- IDFunction, which is set to “increment” by default, that

Page 4 of 6

http://docs.intersystems.com/latest/csp/docbook/DocBook.UI.Page.cls?KEY=RCOS_fsequence
http://docs.intersystems.com/latest/csp/documatic/%25CSP.Documatic.cls?PAGE=CLASS&LIBRARY=%25SYS&CLASSNAME=%25SYSTEM.SQL#METHOD_SetDDLUseSequence
http://docs.intersystems.com/latest/csp/documatic/%25CSP.Documatic.cls?PAGE=CLASS&LIBRARY=%25SYS&CLASSNAME=%25Dictionary.StorageDefinition#PROPERTY_IdFunction

On $Sequence function
Published on InterSystems Developer Community (https://community.intersystems.com)

means that $Increment is used for Id generation. You can change it to “sequence” (Inspector > Storage > Default >
IDFunction).

Bonus
Another quick test I conducted on my notebook: it’s a small ECP configuration with DB Server located on host
operation system and Application Server on guest VM on the same notebook. I mapped ^Person to remote
database. It is a basic test, so I don’t want to make generalizations based on it. There are things to consider when
using $Increment and ECP. Having said that, here are the results:

With $Increment:

USER>do ##class(DC.IncSeq.Test).run()
done:163.781288

^%SYS.MONLBL:

 ; ** Source for Method 'filling' **
1 10 .000503 -- lock +^P:"S"
2 10 .000016 set job = $job
3 10 .000044 for i=1:1:200000 {
4 1843745 1546.57015 set Id = $Increment(^Person)
5 1880231 6.818051 set surname = ##class(%PopulateUtils).LastName()
6 1944594 3.520858 set name = ##class(%PopulateUtils).FirstName()
7 1816896 16.576452 set ^Person(Id) = $ListBuild(job, surname, name)
8 1933736 .895912 }
9 10 .000279 lock -^P:"S"
 ; ** End of source for Method 'filling' **
 ;
 ; ** Source for Method 'run' **
1 1 .000045 kill ^Person
2 1 .000001 set z1 = $zhorolog
3 1 .000007 for i=1:1:10 {
4 10 .059868 job ..filling()
5 0 0 }
6 1 170.342459 lock ^P
7 1 .000005 set z2 = $zhorolog - z1
8 1 .000013 lock
9 1 .000018 write "done:",z2,!
 ; ** End of source for Method 'run' **

$Sequence:

USER>do ##class(DC.IncSeq.Test).run()
done:13.826716

^%SYS.MONLBL

 ; ** Source for Method 'filling' **
1 10 .000434 lock +^P:"S"
2 10 .000014 set job = $job
3 10 .000033 for i=1:1:200000 {

Page 5 of 6

http://docs.intersystems.com/latest/csp/docbook/DocBook.UI.Page.cls?KEY=GDDM_develop#GDDM_develop_consider_increment

On $Sequence function
Published on InterSystems Developer Community (https://community.intersystems.com)

4 1838247 98.491738 set Id = $Sequence(^Person)
5 1712000 3.979588 set surname = ##class(%PopulateUtils).LastName()
6 1809643 3.522974 set name = ##class(%PopulateUtils).FirstName()
7 1787612 16.157567 set ^Person(Id) = $ListBuild(job, surname, name)
8 1862728 .825769 }
9 10 .000255 lock -^P:"S"
 ; ** End of source for Method 'filling' **
 ;
 ; ** Source for Method 'run' **
1 1 .000046 kill ^Person
2 1 .000002 set z1 = $zhorolog
3 1 .000004 for i=1:1:10 {
4 10 .037271 job ..filling()
5 0 0 }
6 1 14.620781 lock ^P
7 1 .000005 set z2 = $zhorolog - z1
8 1 .000013 lock
9 1 .000016 write "done:",z2,!
 ; ** End of source for Method 'run' **

#Best Practices #ObjectScript #Caché

 Source URL:https://community.intersystems.com/post/sequence-function

Page 6 of 6

https://community.intersystems.com/tags/best-practices
https://community.intersystems.com/tags/objectscript
https://community.intersystems.com/tags/cach%C3%A9
https://community.intersystems.com/post/sequence-function

