
How we learned to stop worrying and love InterSystems Ensemble
Published on InterSystems Developer Community (https://community.intersystems.com)

 Article
 Tamara Lebedeva · Jul 21, 2016 6m read

How we learned to stop worrying and love InterSystems Ensemble

Preface: our small, but very ambitious company called “Black Mushroom
Studio” came up with an idea for an e-commerce project and a mobile app that
would let users pay for certain goods/services via a payment aggregator.

What we had initially: an Android app skeleton that, of course, liked
communicating via HTTP and JSON, and a payment system with an API ‒
web services with SOAP content.

Goal: make it all work together.

The following factors influenced the choice of the technology stack: speed of
development and ability to quickly react to changes. The product was
supposed to be an instant success. While competitors were still producing
estimates, we wanted to launch the product. While our competitors were
looking for the right developers, we were supposed to be counting our first

Page 1 of 11

https://community.intersystems.com/user/tamara-lebedeva

How we learned to stop worrying and love InterSystems Ensemble
Published on InterSystems Developer Community (https://community.intersystems.com)

moneys. With this restricting factor in place, we still needed a serious
approach to work, since it was all about investors’ money, and that is
something that requires extra attention.

We could spend a lot of time talking about the advantages and disadvantages
of specific technologies from specific vendors and the benefits of open source
products. Having analyzed several products (which alone is worth of a
separate article), we concluded that InterSystems Ensemble was the best
choice for our needs.

Only one of our developers had practical experience of developing with Caché
ObjectScript, but nobody knew Ensemble. However, we managed to
implement the rather complex business logic of our product with Ensemble in
just a couple of weeks.

What helped us:

1. Ensemble is a comprehensive product combining a DBMS, an application
server, an enterprise service bus, a BMP system and a technology for
developing analytical BI applications. There is no need to learn several
solutions and integrate them.

2. Object-based storage model. If we want save an object to a database, we
just save it to a database.

3. A very simple method of integration with external/internal systems based on
various protocols thanks to an extendable library of adaptors.

Top-level solution

A client sends a request with JSON content over the HTTP protocol to a
server port. This port is listened to by Ensemble’s “black box”. The client gets
a synchronous response after the end of processing.

Page 2 of 11

How we learned to stop worrying and love InterSystems Ensemble
Published on InterSystems Developer Community (https://community.intersystems.com)

What’s inside

Using Ensemble, we implemented a production (an integration solution in
Ensemble) consisting of three parts: business services, business processes,
business operations (from now on, I will be using these terms without the
“business” prefix for ease of reading).

A service in Ensemble is a component that allows you to receive requests
over various protocols; a process is the applications’s logic; an operation is a
component that lets you send outgoing requests to external systems.

All interaction inside Ensemble is based on message queues. A message is
an object of a class inherited from Ens.Message that makes it possible to use
and transmit data from one part of a production to another.

The service in our case uses an HTTP adaptor inherited from
EnsLib.HTTP.InboundAdapter, receives a request sent by a client, converts it
into a “message” and submits it to the process. The business process
responds with a “message” containing processing results and converts it into a
response for the client.

Here is how it looks in our solution:

Method OnProcessInput(pInput As %Library.AbstractStream, Output pOutput As %Stream.Ob

ject) As %Status

{

 Set jsonstr = pInput.Read()

 // Let’s convert it into a message

 Set st = ##class(%ZEN.Auxiliary.jsonProvider).%ConvertJSONToObject(jsonstr,"invoic

es.Msg.Message",.tApplication)

 Throw:$$$ISERR(st) ##class(%Exception.StatusException).CreateFromStatus(st)

Page 3 of 11

How we learned to stop worrying and love InterSystems Ensemble
Published on InterSystems Developer Community (https://community.intersystems.com)

 // Some logic for filling messages with data,

 // characteristic of our queries

 // Let’s start a business process

 Set outApp=##class(invoices.Msg.Resp).%New()

 Set st =..SendRequestSync("Processing",tApplication,.outApp)

 Quit:$$$ISERR(st) st

 // Let’s convert the response to json

 Set json=""

 Do ##class(invoices.Utils).ObjectToJSON(outApp,,,"aeloqu",.json)

 // Let’s put json to the response

 Set pOutput=##class(%GlobalBinaryStream).%New()

 Do pOutput.SetAttribute("Content-Type","application/json")

 Do pOutput.Write(json)

 Quit st

}

A business process is an implementation of the business logic of our
application. It contains a sequence of actions that need to be performed to
send a response to the client. For example: save/update the client’s data, add
a new traceable service, request a service status, pay for a service. Without
an integrated platform, we’d have to write quite a lot of code.

What we need to do in Ensemble: build a business process in a visual editor
from different elements. Business processes are described in the Business

Page 4 of 11

How we learned to stop worrying and love InterSystems Ensemble
Published on InterSystems Developer Community (https://community.intersystems.com)

Process Language (BPL) language. Elements include simple (and not very)
allocations, data conversion, code calls, synchronous and asynchronous
process and operation calls (more on this below).

Data conversion is also very convenient and supports data mapping without
having to write a line of code:

As the result, we got the following instead of a pile of code at a certain stage:

Page 5 of 11

How we learned to stop worrying and love InterSystems Ensemble
Published on InterSystems Developer Community (https://community.intersystems.com)

Page 6 of 11

How we learned to stop worrying and love InterSystems Ensemble
Published on InterSystems Developer Community (https://community.intersystems.com)

A few words about operations now. This entity allows us to send a request via
some protocol to an external system.

How we did it: used a built-in studio extension to import the WSDL provided by
the payment system from Caché Studio WSDL:

Let’s specify the location of the WSDL:

Page 7 of 11

How we learned to stop worrying and love InterSystems Ensemble
Published on InterSystems Developer Community (https://community.intersystems.com)

Let’s tick the “Create an operation” box during import:

Page 8 of 11

How we learned to stop worrying and love InterSystems Ensemble
Published on InterSystems Developer Community (https://community.intersystems.com)

As the result, we get ready code for making requests to and processing
responses from our payment system. Let’s configure an operation in the portal
and specify its class:

Let’s now mount the SSL configuration (it should be created in advance
through System Management Portal ‒ System Administration ‒ Security ‒
SSL/TLS Configurations):

Page 9 of 11

How we learned to stop worrying and love InterSystems Ensemble
Published on InterSystems Developer Community (https://community.intersystems.com)

Done! All we need to do now is to call the operation from a business process.
In our case, we have two such operations: for the information part and the
payment part. In the end, we didn’t have to write a single line of code for
interacting with the payment system.

That’s it, the integration is completed.

However, there is also a separate process that is used for sending PUSH
notifications using built-in Ensemble tools, a separate process for obtaining
SFTP registries from the payment system for receipt generation, a process for
generating PDF receipts, but they all deserve a separate article.

As the result, we spent just a couple of weeks to implement all this (including
the time needed to familiarize ourselves with the new technology).

Of course, this InterSystems product is not perfect (nothing is perfect). While
working on our implementations, we faced a lot of difficulties, and the lack of
documentation for Ensemble didn't help at all. However, in our case, the
technology proved to be efficient and worked very well for our purposes.
Kudos to the company for supporting young and ambitious developers and
their readiness to help. We definitely plan to release new products based on
this technology.

Page 10 of 11

How we learned to stop worrying and love InterSystems Ensemble
Published on InterSystems Developer Community (https://community.intersystems.com)

We have already launched an app based on this technology, and web version
is under way.

Links: Google Play , App Store

#Interoperability #Studio #Ensemble

 Source
URL:https://community.intersystems.com/post/how-we-learned-stop-worrying-and-love-intersystems-ensemble

Page 11 of 11

https://play.google.com/store/apps/details?id=com.blackmushroom.shtrafi
https://itunes.apple.com/ru/app/bezstrafov-strafy-gibdd-onlajn/id1099486143?mt=8
https://community.intersystems.com/tags/interoperability
https://community.intersystems.com/tags/studio
https://community.intersystems.com/tags/ensemble
https://community.intersystems.com/post/how-we-learned-stop-worrying-and-love-intersystems-ensemble

