
InterSystems IRIS Open Authorization Framework (OAuth 2.0) implementation - part 3
Published on InterSystems Developer Community (https://community.intersystems.com)

 Article
 Daniel Kutac · May 3, 2017 18m read

InterSystems IRIS Open Authorization Framework (OAuth 2.0)
implementation - part 3

Created by Daniel Kutac, Sales Engineer, InterSystems

Part 3. Appendix

InterSystems IRIS OAUTH classes explained
In the previous part of our series we have learned about configuring InterSystems IRIS to act as an OAUTH client
as well as authorization and authentication server (by means of OpenID Connect). In this final part of our series we
are going to describe classes implementing InterSystems IRIS OAuth 2.0 framework. We will also discuss use
cases for selected methods of API classes.

The API classes implementing OAuth 2.0 can be separated into three different groups according to their purpose.
All classes are implemented in %SYS namespace. Some of them are public (via % package), some not and should
not be called by developers directly.

Internal classes

These classes belong to the OAuth2 package.

Following table lists some classes of interest (for full list of classes please refer to online Class Reference of your
Caché instance.) None of these classes should be used directly by application developers except those listed
below table.

Class name Description
OAuth2.AccessToken Persistent

OAuth2.AccessToken stores an
OAuth 2.0 access token and its
related information. This is an OAUTH
client copy of the access token.

OAuth2.AccessToken is indexed by
the combination of SessionId and
ApplicationName. Therefore, only one
scope may be requested for each
SessionId/ApplicationName. If a

Page 1 of 16

https://community.intersystems.com/user/daniel-kutac
https://community.intersystems.com/post/cach%C3%A9-open-authorization-framework-oauth-20-implementation-part-2

InterSystems IRIS Open Authorization Framework (OAuth 2.0) implementation - part 3
Published on InterSystems Developer Community (https://community.intersystems.com)

second request is made with a
different scope and access token has
yet been granted, the scope in the
new request becomes the expected
scope.

OAuth2.Client Persistent

The OAuth2.Application class
describes an OAuth2 client and
references the Authorization server
that it uses to authorize the
application based on RFC 6749. A
client system may be used with
multiple authorization servers for
different applications.

OAuth2.Response CSP page

This is the landing page for responses
from an OAuth 2.0 authorization
server used from InterSystems IRIS
OAuth 2.0 client code. The response
is processed here and then redirected
to the eventual target.

OAuth2.ServerDefinition Persistent

Stores authorization server
information used by an OAUTH client
(this InterSystems IRIS instance).
There can be defined multiple client
configurations for each authorization
server definition.

OAuth2.Server.AccessToken Persistent

Access tokens are managed by the
OAuth2.Server.AccessToken at the
OAUTH server. The class stores the
access token and related properties.
This class is also the means of

Page 2 of 16

InterSystems IRIS Open Authorization Framework (OAuth 2.0) implementation - part 3
Published on InterSystems Developer Community (https://community.intersystems.com)

communication between the various
parts of the authorization server.

OAuth2.Server.Auth CSP page

The authorization server supports the
authorization control flow for the
Authorization Code and Implicit grant
types as specified in RFC 6749. The
OAuth2.Server.Auth class is a
subclass of %CSP.Page which acts
as the Authorization Endpoint and
controls the flow in accordance with
RFC 6749.

OAuth2.Server.Client Persistent

OAuth2.Server.Configuration is a
persistent class which describes the
clients which have registered with this
authorization server.

OAuth2.Server.Configuration Persistent

Stores authorization server
configuration. All configuration classes
have corresponding System
Management Portal page where users
fill-in configuration details.

OAuth2.Client, OAuth2.ServerDefinition, OAuth2.Server.Client and OAuth2.Configuration objects may be opened,
modified and saved to create or modify configurations without using the UI. You can use these classes to
manipulate configurations programmatically.

Server customization classes

These classes belong to %OAuth2 package. The package contains a set of internal classes ‒ utilities, we only
describe those classes that can be used by developers. These classes are referred to in OAuth 2.0 Server
Configuration page

%OAuth2.Server.Authenticate CSP Page

%OAuth2.Server.Authenticate acts as
the subclass for all user written

Page 3 of 16

InterSystems IRIS Open Authorization Framework (OAuth 2.0) implementation - part 3
Published on InterSystems Developer Community (https://community.intersystems.com)

Authenticate classes as well as the
default Authenticate class. The
Authenticate class is used by
Authorization Endpoint at
OAuth2.Server.Auth to authenticate
the user. This class allows the
customization of the authentication
process.

The following methods may be
implemented to override the default in
OAuth2.Server:

· DirectLogin ‒ use only when not
willing to display login page

· DisplayLogin ‒ implements
authorization server login form

· DisplayPermissions ‒ implements
form with a list of requested scopes

Further customization of look & feel
can be done via modifying CSS. The
CSS styles are defined
in DrawStyle method.

loginForm is for DisplayLogin form

permissionForm is for
DisplayPermissions form

%OAuth2.Server.Validate CSP Page

This is the default Validate User
Class which is included with the
server. The default class will use the
user database of the Cache instance
where the authorization server is
located to validate the user. The
supported properties will be issuer

Page 4 of 16

InterSystems IRIS Open Authorization Framework (OAuth 2.0) implementation - part 3
Published on InterSystems Developer Community (https://community.intersystems.com)

(Issuer), roles and sub (Username).

The Validate User Class is specified
in the Authorization Server
Configuration. It must contain
a ValidateUser method which will
validate a username/password
combination and return a set of
properties associated with this user.

%OAuth2.Server.Generate Registered object

The %OAuth2.Server.Generate is the
default Generate Token Class which
is included with the server. The
default class will generate a random
string as the opaque access token.

The Generate Token Class is
specified in the Authorization Server
Configuration. It must contain
a GenerateAccessToken method that
will be used to generate an access
token based on the array of properties
that is returned by
the ValidateUser method.

%OAuth2.Server.JWT Registered object

The %OAuth2.Server.JWT is
the Generate Token Class which
creates a JSON Web Token which is
included with the server.
The Generate Token Class is
specified in the Authorization Server
Configuration. It must contain
a GenerateAccessToken method that
will be used to generate an access
token based on the array of properties
that is returned by
the ValidateUser method.

Page 5 of 16

InterSystems IRIS Open Authorization Framework (OAuth 2.0) implementation - part 3
Published on InterSystems Developer Community (https://community.intersystems.com)

%OAuth2.Utils Registered object

This class implements, among others,
logging of various entities. A sample
code in Customization chapter shows
possible use.

Following image shows corresponding section of the OAuth 2.0 authorization server configuration

In case you are going to use OpenID Connect with JWT formatted identity token (id_token), please replace default
Generate Token Class %OAuth2.Server.Generate with %OAuth2.Server.JWT in the configuration, otherwise leave
default Generate class.

We will discuss customization options in more details in a separate chapter later.

Public API classes

Public API classes are used by application developers to provide correct values for their web application message
flow as well as perform access token validation, introspection and so on.

These classes are implemented in %SYS.OAuth2 package. The table lists some of implemented classes.

%SYS.OAuth2.AccessToken Registered object

The %SYS.OAuth2.AccessToken
class defines the client operations
which allow an access token to be
used to authorize to a resource
server.

The underlying token is stored in
OAuth2.AccessToken in the
CACHESYS database.
OAuth2.AccessToken is indexed by

Page 6 of 16

InterSystems IRIS Open Authorization Framework (OAuth 2.0) implementation - part 3
Published on InterSystems Developer Community (https://community.intersystems.com)

the combination
of SessionId and ApplicationName.
Therefore, only one scope may be
requested for each
SessionId/ApplicationName. If a
second request is made with a
different scope and access token has
yet been granted, the scope in the
new request becomes the expected
scope.

%SYS.OAuth2.Authorization Registered object

The %SYS.OAuth2.Authorization
class contains the operations which
are used to authorize a client by
obtaining an access token.

The underlying token is stored in
OAuth2.AccessToken in the
CACHESYS database.
OAuth2.AccessToken is indexed by
the combination
of SessionId and ApplicationName.
Therefore, only one scope may be
requested for each
SessionId/ApplicationName. If a
second request is made with a
different scope and access token has
yet been granted, the scope in the
new request becomes the expected
scope.

Note that this class is in CACHELIB
and thus available everywhere.
However, token storage is in
CACHESYS and thus not directly
available to most code.

%SYS.OAuth2.Validation Registered object

Page 7 of 16

InterSystems IRIS Open Authorization Framework (OAuth 2.0) implementation - part 3
Published on InterSystems Developer Community (https://community.intersystems.com)

The %SYS.OAuth2.Validation class
defines the methods used to validate
(or invalidate) an access token.

The underlying token is stored in
OAuth2.AccessToken in the
CACHESYS database.
OAuth2.AccessToken is indexed by
the combination
of SessionId and ApplicationName.
Therefore, only one scope may be
requested for each
SessionId/ApplicationName. If a
second request is made with a
different scope and access token has
yet been granted, the scope in the
new request becomes the expected
scope.

Let’s have a look at some methods and classes from this group closely.

Every client application class, that uses access token, MUST check its validity. This is done somewhere in the
OnPage method (or corresponding method in ZEN or ZENMojo page).

This is the code snippet:

 // Check if we have an access token from oauth2 server
 set isAuthorized=##class(%SYS.OAuth2.AccessToken).IsAuthorized(..#OAUTH2APPNAME,,"sc
ope1,
 scope2",.accessToken,.idtoken,.responseProperties,.error)

 // Continue with further checks if an access token exists.
 // Below are all possible tests and may not be needed in all cases.
 // The JSON object which is returned for each test is just displayed.
 if isAuthorized {
 // do whatever – call resource server API to retrieve data of interest
 }

Every time we call API of the resource server, we need to supply access token. This is done by AddAccessToken
method of %SYS.OAuth2.AccessToken class, see code snippet here

 set httpRequest=##class(%Net.HttpRequest).%New()
 // AddAccessToken adds the current access token to the request.

Page 8 of 16

InterSystems IRIS Open Authorization Framework (OAuth 2.0) implementation - part 3
Published on InterSystems Developer Community (https://community.intersystems.com)

 set sc=##class(%SYS.OAuth2.AccessToken).AddAccessToken(
 httpRequest,,
 ..#SSLCONFIG,
 ..#OAUTH2APPNAME)
 if $$$ISOK(sc) {
 set sc=httpRequest.Get(.. Service API url …)
 }

In the sample code provided in previous parts of our series, we could see this code in OnPreHTTP method of the
first application page (Cache1N). This is the best place to perform access token check for the application’s initial
page.

ClassMethod OnPreHTTP() As %Boolean [ServerOnly = 1]
{
 set scope="openid profile scope1 scope2"
 #dim %response as %CSP.Response
 if ##class(%SYS.OAuth2.AccessToken).IsAuthorized(..#OAUTH2APPNAME,,
 scope,.accessToken,.idtoken,.responseProperties,.error) {
 set %response.ServerSideRedirect="Web.OAUTH2.Cache2N.cls"
 }
 quit 1
}

The IsAuthorized method of SYS.OAuth2.AccessToken class in the above code is checking whether valid access
token exists and if not, lets us display the page content with login button/link pointing to the authentication form of
the authorization server, otherwise redirects us right to the second page that actually does the work of retrieving
the data.

We can, however, change the code so it reads this:

ClassMethod OnPreHTTP() As %Boolean [ServerOnly = 1]
{
 set scope="openid profile scope1 scope2"
 set sc=##class(%SYS.OAuth2.Authorization).GetAccessTokenAuthorizationCode(
 ..#OAUTH2APPNAME,scope,..#OAUTH2CLIENTREDIRECTURI,.properties)
 quit +sc
}

This variant has different effect. When using GetAccessTokenAuthorizationCode method of
%SYS.OAuth2.Authorization class, we navigate directly to the authentication form of the authorization server,
without displaying content of our application’s first page.

This can be handy in cases, where the web application is invoked from a mobile device native application, where
some user information has already been shown by the native application (the launcher) and there is no need to
display web page with a button pointing to the authorization server.

If you use signed JWT token, then you need to validate its content. This is done by the following method:

 set valid=##class(%SYS.OAuth2.Validation).ValidateJWT(applicationName,accessToken,sc
ope,,.jsonObject,.securityParameters,.sc)

Detailed description of method parameters can be found at Class Reference documentation.

Customization

Page 9 of 16

InterSystems IRIS Open Authorization Framework (OAuth 2.0) implementation - part 3
Published on InterSystems Developer Community (https://community.intersystems.com)

Let’s spend some time describing, what options OAUTH offers for Authentication / Authorization UI customization.

Suppose your company policy demands some more restrictive behavior of scope granting. For example, you may
run home banking application that connects to various banking systems within your bank. The bank only grants
access to scope that contains information about the actual bank account being retrieved. As bank runs millions of
accounts, it is impossible to define static scope for every single account. Instead, you can generate scope on the fly
‒ during authorization processing, as part of custom authorization page code.

For the purpose of the demo, we need to add one more scope to the server configuration ‒ see image.

We also added reference to custom Authenticate class, named %OAuth2.Server.Authenticate.Bank.

So, how does the bank authentication class looks like? Here is possible variant of the class. It enhances standard
authentication and authorization forms with user provided data. The information that flows between
BeforeAuthenticate, DisplayPermissions and AfterAuthenticate methods is passed by properties variable of
%OAuth2.Server.Properties class

Class %OAuth2.Server.Authenticate.Bank Extends %OAuth2.Server.Authenticate
{
/// Add CUSTOM BESTBANK support for account scope.
ClassMethod BeforeAuthenticate(scope As %ArrayOfDataTypes, properties As %OAuth2.Serv
er.Properties) As %Status
{
 // If launch scope not specified, then nothing to do
 If 'scope.IsDefined("account") Quit $$$OK
 // Get the launch context from the launch query parameter.
 Set tContext=properties.RequestProperties.GetAt("accno")
 // If no context, then nothing to do
 If tContext="" Quit $$$OK

 try {
 // Now the BestBank context should be queried.
 Set tBankAccountNumber=tContext
 // Add scope for accno. -> dynamically modify scope (no account:<accno> scope exi
sts in the server configuration)
 // This particular scope is used to allow the same accno to be accessed via accou
nt
 // if it was previously selected by account or account:accno when using cookie su
pport
 Do scope.SetAt("Access data for account "_tBankAccountNumber,"account:"_tBankAcco
untNumber)
 // We no longer need the account scope, since it has been processed.
 // This will prevent existence of account scope from forcing call of DisplayPermi
ssions.
 Do scope.RemoveAt("account")

 // Add the accno property which AfterAuthenticate will turn into a response prope
rty

Page 10 of 16

InterSystems IRIS Open Authorization Framework (OAuth 2.0) implementation - part 3
Published on InterSystems Developer Community (https://community.intersystems.com)

 Do properties.CustomProperties.SetAt(tBankAccountNumber,"account_number")
 } catch (e) {
 s ^dk("err",$i(^dk("err")))=e.DisplayString()
 }
 Quit $$$OK
}

/// Add CUSTOM BESTBANK support for account scope.
/// If account_number custom property was added by either BeforeAuthenticate (account
)
/// or DisplayPermissions (account:accno), then add the needed response property.
ClassMethod AfterAuthenticate(scope As %ArrayOfDataTypes, properties As %OAuth2.Serve
r.Properties) As %Status
{
 // There is nothing to do here unless account_number (account) or accno (account:acc
no) property exists
 try {
 // example of custom logging
 If $$$SysLogLevel>=3 {
 Do ##class(%OAuth2.Utils).LogServerScope("log ScopeArray-
CUSTOM BESTBANK",%token)
 }
 If properties.CustomProperties.GetAt("account_number")'="" {
 // Add the accno query parameter to the response.
 Do properties.ResponseProperties.SetAt(properties.CustomProperties.GetAt("accoun
t_number"),"accno")
 }
 } catch (e) {
 s ^dk("err",$i(^dk("err")))=e.DisplayString()
 }
 Quit $$$OK
}

/// DisplayPermissions modified to include a text for BEST BANK account.
ClassMethod DisplayPermissions(authorizationCode As %String, scopeArray As %ArrayOfDa
taTypes, currentScopeArray As %ArrayOfDataTypes, properties As %OAuth2.Server.Propert
ies) As %Status
{
 Set uilocales = properties.RequestProperties.GetAt("ui_locales")
 Set tLang = ##class(%OAuth2.Utils).SelectLanguage(uilocales,"%OAuth2Login")
 // $$$TextHTML(Text,Domain,Language)
 Set ACCEPTHEADTITLE = $$$TextHTML("OAuth2 Permissions Page","%OAuth2Login",tLang)
 Set USER = $$$TextHTML("User:","%OAuth2Login",tLang)
 Set POLICY = $$$TextHTML("Policy","%OAuth2Login",tLang)
 Set TERM = $$$TextHTML("Terms of service","%OAuth2Login",tLang)
 Set ACCEPTCAPTION = $$$TextHTML("Accept","%OAuth2Login",tLang)
 Set CANCELCAPTION = $$$TextHTML("Cancel","%OAuth2Login",tLang)
 &html<<html>>
 Do ..DrawAcceptHead(ACCEPTHEADTITLE)
 Set divClass = "permissionForm"
 Set logo = properties.ServerProperties.GetAt("logo_uri")
 Set clientName = properties.ServerProperties.GetAt("client_name")
 Set clienturi = properties.ServerProperties.GetAt("client_uri")
 Set policyuri = properties.ServerProperties.GetAt("policy_uri")
 Set tosuri = properties.ServerProperties.GetAt("tos_uri")
 Set user = properties.GetClaimValue("preferred_username")
 If user="" {
 Set user = properties.GetClaimValue("sub")
 }

Page 11 of 16

InterSystems IRIS Open Authorization Framework (OAuth 2.0) implementation - part 3
Published on InterSystems Developer Community (https://community.intersystems.com)

 &html<<body>>
 &html<<div id="topLabel"></div>>
 &html<<div class="#(divClass)#">>
 If user '= "" {
 &html<
 <div>
 #(USER)#
#(##class(%CSP.Page).EscapeHTML(user
))#
 >
 }
 If logo '= "" {
 Set espClientName = ##class(%CSP.Page).EscapeHTML(clientName)
 &html<<img src="#(logo)#" alt="#(espClientName)#" title="#
(espClientName)#" align="middle">>
 }
 If policyuri '= "" ! (tosuri '= "") {
 &html<>
 If policyuri '= "" {
 &html<#(POLICY)#
>
 }
 If tosuri '= "" {
 &html<#(TERM)#>
 }
 &html<>
 }
 &html<</div>>
 &html<<form>>
 Write ##class(%CSP.Page).InsertHiddenField("","AuthorizationCode",authorizationCode)
,!
 &html<<div>>
 If $isobject(scopeArray), scopeArray.Count() > 0 {
 Set tTitle = $$$TextHTML(" is requesting these permissions:","%OAuth2Login",tLang
)
 &html<<div class="permissionTitleRequest">>
 If clienturi '= "" {
 &html<#(##class(%CSP.Page).EscapeHTML(cl
ientName))#>
 } Else {
 &html<#(##class(%CSP.Page).EscapeHTML(clientName))#>
 }
 &html<#(##class(%CSP.Page).EscapeHTML(tTitle))#</div>>
 Set tCount = 0
 Set scope = ""
 For {
 Set display = scopeArray.GetNext(.scope)
 If scope = "" Quit
 Set tCount = tCount + 1
 If display = "" Set display = scope
 Write "<div class='permissionItemRequest'>"_tCount_". "_##class(%CSP.Page).Escap
eHTML(display)_"</div>"
 }
 }

 If $isobject(currentScopeArray), currentScopeArray.Count() > 0 {
 Set tTitle = $$$TextHTML(" already has these permissions:","%OAuth2Login",tLang)
 &html<<div>>
 &html<<div class="permissionTitleExisting">>
 If clienturi '= "" {
 &html<#(##class(%CSP.Page).EscapeHTML(cl

Page 12 of 16

InterSystems IRIS Open Authorization Framework (OAuth 2.0) implementation - part 3
Published on InterSystems Developer Community (https://community.intersystems.com)

ientName))#>
 } Else {
 &html<#(##class(%CSP.Page).EscapeHTML(clientName))#>
 }
 &html<#(##class(%CSP.Page).EscapeHTML(tTitle))#</div>>
 Set tCount = 0
 Set scope = ""
 For {
 Set display = currentScopeArray.GetNext(.scope)
 If scope = "" Quit
 Set tCount = tCount + 1
 If display = "" Set display = scope
 Write "<div class='permissionItemExisting'>"_tCount_". "_##class(%CSP.Page).Esca
peHTML(display)_"</div>"
 }
 &html<</div>>
 }

 /*********************************/
 /* BEST BANK CUSTOMIZATION */
 /*********************************/
 try {
 If properties.CustomProperties.GetAt("account_number")'="" {
 // Display the account number obtained from account context.
 Write "<div class='permissionItemRequest'>Selected account is "_properties.Cu
stomProperties.GetAt("account_number")_"</div>",!

 // or, alternatively, let user add some more information at this stage (e.g. lin
ked account number)
 //Write "<div>Account Number: <input type='text' id='accno' name='p_accno' place
holder='accno' autocomplete='off' ></div>",!
 }
 } catch (e) {
 s ^dk("err",$i(^dk("err")))=e.DisplayString()
 }

 /* original implementation code continues here... */
 &html<
 <div><input type="submit" id="btnAccept" name="Accept" value="#(ACCEPTCAPTION)#"/>
</div>
 <div><input type="submit" id="btnCancel" name="Cancel" value="#(CANCELCAPTION)#"/>
</div>
 >
 &html<</form>
 </div>>
 Do ..DrawFooter()
 &html<</body>>
 &html<<html>>
 Quit 1
}

/// For CUSTOM BESTBANK we need to validate that patient entered,
/// ! javascript in this method is only needed when we let user enter some addtional
data
/// within DisplayPermissions method !
ClassMethod DrawAcceptHead(ACCEPTHEADTITLE)
{
 &html<<head><title>#(ACCEPTHEADTITLE)#</title>>
 Do ..DrawStyle()

Page 13 of 16

InterSystems IRIS Open Authorization Framework (OAuth 2.0) implementation - part 3
Published on InterSystems Developer Community (https://community.intersystems.com)

 &html<
 <script type="text/javascript">
 function doAccept()
 {
 var accno = document.getElementById("accno").value;
 var errors = "";
 if (accno !== null) {
 if (accno.length < 1) {
 errors = "Please enter account number name";
 }
 }
 if (errors) {
 alert(errors);
 return false;
 }

 // submit the form
 return true;
 }
 </script>
 >
 &html<</head>>
}

}

As you could see, the %OAuth2.Server.Properties class contains several arrays, that are passed around. These
are:

· RequestProperties ‒ contains parameters from authorization request

· CustomProperties ‒ container for exchanging data between above mention

· ResponseProperties ‒ container for properties to be added to JSON response object to atoken request

· ServerProperties ‒ contains shared properties that authorization server exposes to customization code (e.g.
logo_uri, client_uri etc…)

Further it contains several “claims” properties, that are used to specify what claims have to be returned by the
authorization server.

In order to call this authentication page correctly, we modified our initial client page code so it looks like this:

 set scope="openid profile scope1 scope2 account"
 // this data comes from application (a form data or so...) and sets a context for ou
r request
 // we can, through subclassing the Authenticate class, display this data to user so
he/she can decide
 // whether to grant access or not
 set properties("accno")="75-452152122-5320"
 set url=##class(%SYS.OAuth2.Authorization).GetAuthorizationCodeEndpoint(
 ..#OAUTH2APPNAME,
 scope,
 ..#OAUTH2CLIENTREDIRECTURI,
 .properties,
 .isAuthorized,
 .sc)
 if $$$ISERR(sc) {

Page 14 of 16

InterSystems IRIS Open Authorization Framework (OAuth 2.0) implementation - part 3
Published on InterSystems Developer Community (https://community.intersystems.com)

 write "GetAuthorizationCodeEndpoint Error="
 write ..EscapeHTML($system.Status.GetErrorText(sc))_"
",!
 }

As you can see, we added account scope and properties array node “accno” with a context value, which can
originate at different part of our application. This value is passed inside access token to the resource server for
further processing.

There is a real life scenario that uses the above described logic ‒ the FHIR standard for exchanging electronic
patient records.

Debugging
The OAUTH framework comes with built-in debugging. This is very helpful as all communication between client and
servers is encrypted. The debugging feature allows to capture traffic data generated by the API classes before they
are sent over the wire. In order to debug your code, you can implement a simple routine or class according to the
code below. Please bear in mind that you need to implement this code at all communicating InterSystems IRIS
instances! In that case, you better provide a filename with name indicating its role within the process of OAUTH
flow. (The sample code below is saved as rr.mac routine, but the name is up to you.)

 // d start^rr()
start() public {
 new $namespace
 set $namespace="%sys"
 kill ^%ISCLOG
 set ^%ISCLOG=5
 set ^%ISCLOG("Category","OAuth2")=5
 set ^%ISCLOG("Category","OAuth2Server")=5
 quit
}

 // d stop^rr()
stop() public {
 new $namespace
 set $namespace="%sys"
 set ^%ISCLOG=0
 set ^%ISCLOG("Category","OAuth2")=0
 set ^%ISCLOG("Category","OAuth2Server")=0
 quit

}

 // display^rr()
display() public {
 new $namespace
 set $namespace="%sys"
 do ##class(%OAuth2.Utils).DisplayLog("c:\temp\oauth2_auth_server.log")
 quit
}

Then, before you start testing, open a terminal and invoke d start^rr() at all InterSystems IRIS nodes (client, auth
server or resource server). Once you’re finished, run d stop^rr() and d display^rr() to populate log files.

Summary
In this series of articles, we have learned how to use InterSystems IRIS OAuth 2.0 implementation. Beginning with

Page 15 of 16

InterSystems IRIS Open Authorization Framework (OAuth 2.0) implementation - part 3
Published on InterSystems Developer Community (https://community.intersystems.com)

simple client application demonstration in part 1, followed by complex sample described in part 2. Finally, we
described most important classes of the OAuth 2.0 implementation and explained when they should be called
within user applications.

My special thanks to Marvin Tener, for his endless patience when replying to my, sometimes dumb, questions and
for reviewing the series.

#Authentication #Access control #OAuth2 #Security #Caché #Ensemble #InterSystems IRIS

 Source
URL:https://community.intersystems.com/post/intersystems-iris-open-authorization-framework-
oauth-20-implementation-part-3

Page 16 of 16

https://community.intersystems.com/tags/authentication
https://community.intersystems.com/tags/access-control
https://community.intersystems.com/tags/oauth2
https://community.intersystems.com/tags/security
https://community.intersystems.com/tags/cach%C3%A9
https://community.intersystems.com/tags/ensemble
https://community.intersystems.com/tags/intersystems-iris
https://community.intersystems.com/post/intersystems-iris-open-authorization-framework-oauth-20-implementation-part-3
https://community.intersystems.com/post/intersystems-iris-open-authorization-framework-oauth-20-implementation-part-3

