InterSystems IRIS Open Authorization Framework (OAuth 2.0) implementation - part 3
Published on InterSystems Developer Community (https://community.intersystems.com)

Article
Daniel Kutac - may3, 2017 18y read

InterSystems IRIS Open Authorization Framework (OAuth 2.0)
implementation - part 3

Part 3. Appendix

InterSystems IRIS OAUTH classes explained

In the previous part of our series we have learned about configuring InterSystems IRIS to act as an OAUTH client
as well as authorization and authentication server (by means of OpenID Connect). In this final part of our series we
are going to describe classes implementing InterSystems IRIS OAuth 2.0 framework. We will also discuss use
cases for selected methods of API classes.

The API classes implementing OAuth 2.0 can be separated into three different groups according to their purpose.
All classes are implemented in %SYS namespace. Some of them are public (via % package), some not and should
not be called by developers directly.

Internal classes

These classes belong to the OAuth2 package.

Following table lists some classes of interest (for full list of classes please refer to online Class Reference of your
Caché instance.) None of these classes should be used directly by application developers except those listed

Page 1 of 16


https://community.intersystems.com/user/daniel-kutac
https://community.intersystems.com/post/cach%C3%A9-open-authorization-framework-oauth-20-implementation-part-2

InterSystems IRIS Open Authorization Framework (OAuth 2.0) implementation - part 3
Published on InterSystems Developer Community (https://community.intersystems.com)

Page 2 of 16



InterSystems IRIS Open Authorization Framework (OAuth 2.0) implementation - part 3
Published on InterSystems Developer Community (https://community.intersystems.com)

OAuth2.Client, OAuth2.ServerDefinition, OAuth2.Server.Client and OAuth2.Configuration objects may be opened,
modified and saved to create or modify configurations without using the Ul. You can use these classes to
manipulate configurations programmatically.

Server customization classes

These classes belong to %OAuth2 package. The package contains a set of internal classes - utilities, we only
describe those classes that can be used by developers. These classes are referred to in OAuth 2.0 Server
Configuration

Page 3 of 16



InterSystems IRIS Open Authorization Framework (OAuth 2.0) implementation - part 3
Published on InterSystems Developer Community (https://community.intersystems.com)

Page 4 of 16



InterSystems IRIS Open Authorization Framework (OAuth 2.0) implementation - part 3
Published on InterSystems Developer Community (https://community.intersystems.com)

Page 5 of 16



InterSystems IRIS Open Authorization Framework (OAuth 2.0) implementation - part 3
Published on InterSystems Developer Community (https://community.intersystems.com)

Following image shows corresponding section of the OAuth 2.0 authorization server configuration

Customization Options | s\ thenticate class

[ 0AUth2 Server Authenticate GS2016 |
Required.

Validate user class

[ 0AUth2 Server Validate |
Required.

Session maintenance class

[DAUth2 Server Session |
Required.

Generate token class

[e0AUth2. ServerJWT |

Required.

Customization namespace
| %SYS v |

Required.

In case you are going to use OpenlD Connect with JWT formatted identity token (idtoken), please replace default
Generate Token Class %0OAuth2.Server.Generate with %OAuth2.Server.JWT in the configuration, otherwise leave
default Generate class.

We will discuss customization options in more details in a separate chapter later.

Public API classes

Public API classes are used by application developers to provide correct values for their web application message
flow as well as perform access token validation, introspection and so on.

Th | implemen in %SYS.OAuth2 k _Th le li f implemen |

Page 6 of 16



InterSystems IRIS Open Authorization Framework (OAuth 2.0) implementation - part 3
Published on InterSystems Developer Community (https://community.intersystems.com)

Page 7 of 16



InterSystems IRIS Open Authorization Framework (OAuth 2.0) implementation - part 3
Published on InterSystems Developer Community (https://community.intersystems.com)

Let's have a look at some methods and classes from this group closely.

Every client application class, that uses access token, MUST check its validity. This is done somewhere in the
OnPage method (or corresponding method in ZEN or ZENMojo page).

This is the code snippet:

/1 Check if we have an access token from oaut h2 server
set i sAuthori zed=##cl ass(¥BYS. QAut h2. AccessToken) . | sAut hori zed(. . #OAUTH2APPNAME, , "sc
opel,
scope2", .accessToken, . i dt oken, . responseProperties,.error)

/1 Continue with further checks if an access token exists.
/1 Below are all possible tests and nay not be needed in all cases.
/1 The JSON object which is returned for each test is just displayed.
if isAuthorized {
/1 do whatever — call resource server APl to retrieve data of interest

}

Every time we call API of the resource server, we need to supply access token. This is done by AddAccessToken
method of %SYS.OAuth2.AccessToken class, see code snippet here

set htt pRequest =##cl ass(%\et . Ht t pRequest) . ¥New()
/1 AddAccessToken adds the current access token to the request.

Page 8 of 16



InterSystems IRIS Open Authorization Framework (OAuth 2.0) implementation - part 3
Published on InterSystems Developer Community (https://community.intersystems.com)

set sc=##cl ass(¥BYS. QAut h2. AccessToken) . AddAccessToken(
ht t pRequest, ,
. . #SSLCONFI G,
. . #OAUTH2 APPNAIVE)
if $$$1 SK(sc) {
set sc=httpRequest. Get(.. Service APl url .)

}

In the sample code provided in previous parts of our series, we could see this code in OnPreHTTP method of the
first application page (CachelN). This is the best place to perform access token check for the application’s initial

page.

Cl assMet hod OnPreHTTP() As %Bool ean [ ServerOnly = 1 ]
{
set scope="openid profile scopel scope2"
#di m % esponse as %CSP. Response
i f ##cl ass(Y8YS. QAut h2. AccessToken) . | sAut hori zed(. . #OAUTH2APPNAME, ,
scope, . accessToken, . i dt oken, . responseProperties,.error) {
set 9% esponse. Server Si deRedi r ect =" Wb. QAUTH2. Cache2N. cl s"
}
quit 1
}

The IsAuthorized method of SYS.OAuth2.AccessToken class in the above code is checking whether valid access
token exists and if not, lets us display the page content with login button/link pointing to the authentication form of
the authorization server, otherwise redirects us right to the second page that actually does the work of retrieving
the data.

We can, however, change the code so it reads this:

G assMet hod OnPreHTTP() As %Bool ean [ ServerOnly = 1 ]
{

set scope="openid profile scopel scope2"
set sc=##cl ass(¥BYS. QAut h2. Aut hori zati on) . Get AccessTokenAut hori zati onCode(
. . #OAUTH2APPNAME, scope, . . #OAUTH2CLI ENTREDI RECTURI , . properti es)

quit +sc
}
This variant has different effect. When using GetAccessTokenAuthorizationCode method of
%SYS.OAuth2.Authorization class, we navigate directly to the authentication form of the authorization server,
without displaying content of our application’s first page.
This can be handy in cases, where the web application is invoked from a mobile device native application, where
some user information has already been shown by the native application (the launcher) and there is no need to

display web page with a button pointing to the authorization server.

If you use signed JWT token, then you need to validate its content. This is done by the following method:

set val i d=##cl ass(%5YS. QAut h2. Val i dati on). Val i dat eJWI'(appl i cat i onNane, accessToken, sc
ope, ,.j sonMvj ect, . securityParaneters,.sc)

Detailed description of method parameters can be found at Class Reference documentation.

Customization

Page 9 of 16



InterSystems IRIS Open Authorization Framework (OAuth 2.0) implementation - part 3
Published on InterSystems Developer Community (https://community.intersystems.com)

Let's spend some time describing, what options OAUTH offers for Authentication / Authorization Ul customization.

Suppose your company policy demands some more restrictive behavior of scope granting. For example, you may
run home banking application that connects to various banking systems within your bank. The bank only grants
access to scope that contains information about the actual bank account being retrieved. As bank runs millions of
accounts, it is impossible to define static scope for every single account. Instead, you can generate scope on the fly
- during authorization processing, as part of custom authorization page code.

For the purpose of the demo, we need to add one more scope to the server configuration — see image.

Scopes | sypported scopes
Scope Description
account  Bank Account Scope - BestBank Edit
scopel First Scope Edit
scopel Second Scope Edit
scope3 Third Scope Edit
scoped Fourth Scope Edit
Require at least one supported scope
Add Supported Scope

We also added reference to custom Authenticate class, named %OAuth2.Server.Authenticate.Bank.

So, how does the bank authentication class looks like? Here is possible variant of the class. It enhances standard
authentication and authorization forms with user provided data. The information that flows between
BeforeAuthenticate, DisplayPermissions and AfterAuthenticate methods is passed by properties variable of
%O0Auth2.Server.Properties class

C ass %Aut h2. Server. Aut henti cat e. Bank Extends %Aut h2. Server. Aut henti cate
{
/1] Add CUSTOM BESTBANK support for account scope.
O assMet hod Bef or eAut henti cat e(scope As %ArrayOf Dat aTypes, properties As %Aut h2. Serv
er.Properties) As ¥status
{

/1 1f launch scope not specified, then nothing to do

If 'scope.IsDefined("account") Quit $$SK

/1 Get the launch context fromthe |aunch query paraneter.

Set t Cont ext=properties. Request Properties. Get At ("accno"

/1 1f no context, then nothing to do

If tContext="" Quit $$$K

try {
/1 Now t he BestBank context should be queried.

Set t BankAccount Nunber =t Cont ext

/1 Add scope for accno. -> dynamically nodify scope (no account:<accho> scope exi
sts in the server configuration)

/1 This particular scope is used to allow the sane accno to be accessed via accou

nt

/1 if it was previously selected by account or account:accno when using cookie su
pport

Do scope. Set At ("Access data for account "_tBankAccount Nunmber, "account:" _tBankAcco
unt Nurber)

/1 We no |onger need the account scope, since it has been processed.

/1 This will prevent existence of account scope fromforcing call of D splayPermi
ssi ons.

Do scope. RenpveAt ("account™)

/1 Add the accno property which AfterAuthenticate will turn into a response prope
rey

Page 10 of 16



InterSystems IRIS Open Authorization Framework (OAuth 2.0) implementation - part 3
Published on InterSystems Developer Community (https://community.intersystems.com)

Do properties. CustonProperties. Set At (t BankAccount Nunber, "account _nunber ™)
} catch (e) {
s Ndk("err", $i (~dk("err")))=e. Di splayString()
}
Quit $$SK
}

/1] Add CUSTOM BESTBANK support for account scope.
/1l 1f account nunber custom property was added by either BeforeAuthenticate (account
)
/1l or DisplayPern ssions (account:accno), then add the needed response property.
Cl assMet hod AfterAuthenticate(scope As %ArrayCf Dat aTypes, properties As %Aut h2. Serve
r.Properties) As %&tatus
{
/1l There is nothing to do here unl ess account _numnber (account) or accno (account:acc
no) property exists
try {
/1 exanpl e of custom | oggi ng
If $$$SysLoglLevel >=3 {
Do ##cl ass(%Aut h2. Utils). LogServer Scope("l og ScopeArray-
CUSTOM BESTBANK", % oken)
}
I f properties. CustonProperties. GetAt("account nunber")'="" {
/1 Add the accno query paraneter to the response.
Do properties. ResponseProperties. Set At (properties. CustonProperties. Get At ("accoun
t _nunber"), "accno")
}
} catch (e) {
s ~dk("err", $i (~dk("err")))=e.DisplayString()
}
Qit $$K
}

/1] DisplayPerm ssions nodified to include a text for BEST BANK account.
Cl assMet hod Di spl ayPer nmi ssi ons(aut hori zati onCode As %String, scopeArray As %ArrayOf Da
taTypes, currentScopeArray As %ArrayCf Dat aTypes, properties As %Aut h2. Server. Propert
i es) As ¥status
{

Set uilocales = properties. Request Properties. Get At ("ui _| ocal es")

Set tlLang = ##cl ass(%0Aut h2. Util s). Sel ect Language(ui | ocal es, " %0Aut h2Logi n")

/1 $$$Text HTM_( Text , Donmi n, Language)

Set ACCEPTHEADTI TLE = $$$Text HTM.( " QAut h2 Per m ssi ons Page", " %Aut h2Logi n", t Lang)

Set USER = $$$Text HTML(" User: ", " %0Aut h2Logi n", t Lang)

Set POLICY = $$$Text HTM.(" Pol i cy", " %Aut h2Logi n", t Lang)

Set TERM = $$$Text HTML(" Ter ns of service", " %0Aut h2Logi n", t Lang)

Set ACCEPTCAPTI ON = $$$Text HTM.(" Accept ", " %DAut h2Logi n", t Lang)

Set CANCELCAPTI ON = $$$Text HTM.(" Cancel ", " %Aut h2Logi n", t Lang)

&ht m <<ht m >>

Do .. DrawAccept Head( ACCEPTHEADTI TLE)

Set divC ass = "perm ssi onFor ni

Set logo = properties. ServerProperties. GetAt("logo_uri")

Set clientName = properties. ServerProperties. Get At ("client_nanme")

Set clienturi = properties.ServerProperties.GetAt("client_uri")
Set policyuri = properties.ServerProperties.GetAt("policy_uri")
Set tosuri = properties.ServerProperties. GetAt("tos_uri")

Set user = properties. Getd ai nval ue("preferred_usernane")

I f user="" {

Set user = properties. Getd ai nival ue("sub")
}

Page 11 of 16



InterSystems IRIS Open Authorization Framework (OAuth 2.0) implementation - part 3
Published on InterSystems Developer Community (https://community.intersystems.com)

&ht m <<body>>
&ht m <<di v id="topLabel "></di v>>
&t m <<di v class="#(di vQ ass) #">>
[ f user "= "" {
&ht m <
<di v>
<span id="left" class="user Box" >#( USER) #<br >#( ##cl ass( %CSP. Page) . EscapeHTM._( user
) ) #</ span>
>
}
If logo "= "" {
Set espdient Name = ##cl ass( %CSP. Page) . EscapeHTM_(cl i ent Nane)
&ht m <<span cl ass="1 ogoC ass"><i ng src="#(1ogo)#" alt="#(espCientName)#" title="#
(espd i ent Nane) #* al i gn="m ddl e" ></ span>>

}
[f policyuri "="" 1 (tosuri "="") {
&htm <<span id="right" class="linkBox">>
If policyuri "="" {
&t m <<a href="#(policyuri)#" target="_bl ank" >#( PCLI CY) #</ a><br >>
}
If tosuri '="" {
&t m <<a href="#(tosuri)#" target="_bl ank" >#( TERM #</ a>>
}
&ht m <</ span>>
}

&ht m <</ di v>>
&ht m <<f or mp>
Wite ##cl ass(%UCSP. Page) . I nsert Hi ddenFi el d("", " Aut hori zati onCode", aut hori zat i onCode)
I
&ht m <<di v>>
| f $isobject(scopeArray), scopeArray.Count() > 0 {
Set tTitle = $$$Text HTM.(" is requesting these perm ssions:", " %Aut h2Logi n", t Lang

&t m <<di v cl ass="perni ssionTitl eRequest " >>
If clienturi "= "" {
&t m <<a href="#(clienturi)#" target="_bl ank" >#( ##cl ass( %UCSP. Page) . EscapeHTM_( cl
i ent Nane) ) #</ a>>
} Else {
&ht m <#( ##cl ass( UCSP. Page) . EscapeHTM_(cl i ent Nane) ) #>
}
&ht m <#( ##cl ass( UCSP. Page) . EscapeHTM_(t Titl e)) #</ di v>>
Set tCount =0

Set scope = ""
For {
Set di splay = scopeArray. Get Next (. scope)
If scope = "" Quit
Set tCount = tCount + 1
If display = Set display = scope
Wite "<div class=" perm ssionltenRequest'>"_tCount_". "_##cl ass(%CSP. Page) . Escap
eHTM_(di spl ay) _"</di v>"
}

}

| f $i sobject(current ScopeArray), currentScopeArray. Count() > 0 {
Set tTitle = $$$Text HTM.(" al ready has t hese perm ssions:", " %0Aut h2Logi n", t Lang)
&ht m <<di v>>
&t m <<di v cl ass="perm ssionTitl eExisting">>
If clienturi '="" {
&t m <<a href="#(clienturi)#" target="_bl ank" >#(##cl ass( %UCSP. Page) . EscapeHTM_( cl

Page 12 of 16



InterSystems IRIS Open Authorization Framework (OAuth 2.0) implementation - part 3
Published on InterSystems Developer Community (https://community.intersystems.com)

i ent Nane) ) #</ a>>
} Else {
&ht m <#( ##cl ass( UCSP. Page) . EscapeHTM_(cl i ent Nane) ) #>
}
&ht m <#(##cl ass( UCSP. Page) . EscapeHTM_(t Ti tl e) ) #</ di v>>
Set tCount = O

Set scope = ""
For {
Set display = current ScopeArray. Get Next (. scope)
If scope = "" Quit
Set tCount = tCount + 1
If display = "" Set display = scope
Wite "<div class=" perm ssionltenkExisting >"_tCount_". " _ ##cl ass(%CSP. Page) . Esca
peHTM_(di spl ay) _"</di v>"
}
&ht ml <</ di v>>
}
/*********************************/
/* BEST BANK CUSTOM ZATI ON *)
/*********************************/
try {
I f properties.CustonProperties. Get At ("account _nunber")"'="" {

/1 Display the account nunber obtained from account context.
Wite "<div class=" perm ssionltenRequest' ><b>Sel ected account is " _properties.Cu
stonProperties. Get At ("account _nunber™) "</ b></div>",!

/1 or, alternatively, let user add sone nore information at this stage (e.g. lin
ked account numnber)
/I Wite "<di v>Account Nunber: <input type='text' id=" accno' name='p_accno' place
hol der =" accno' autoconpl ete="of f' ></div>",!
}
} catch (e) {
s Mdk("err", $i (~dk("err")))=e.DisplayString()
}

/* original inplenmentation code continues here... */
&ht m <
<di v><i nput type="submit" id="btnAccept" nane="Accept" val ue="#( ACCEPTCAPTI ON) #"/ >
</ di v>
<di v><i nput type="subnit" id="btnCancel" nane="Cancel" val ue="#( CANCELCAPTI ON) #"/ >
</div>
>
&ht m <</ f or mp
</ di v>>
Do .. Drawrooter()
&ht m <</ body>>
&ht m <<ht m >>
Quit 1
}

/1l For CUSTOM BESTBANK we need to validate that patient entered,
/1] ' javascript in this method is only needed when we | et user enter sonme addti onal
dat a
/1l within D splayPernissions nethod !
G assMet hod Dr awAccept Head( ACCEPTHEADTI TLE)
{
&ht m <<head><tit | e>#( ACCEPTHEADTI TLE) #</ti tl e>>
Do ..Drawstyl e()

Page 13 of 16



InterSystems IRIS Open Authorization Framework (OAuth 2.0) implementation - part 3
Published on InterSystems Developer Community (https://community.intersystems.com)

&ht m <
<script type="text/javascript">
function doAccept ()

{
var accno = docunent. get El ement Byl d("accno"). val ue;
var errors = "";
if (accno !'== null) {
if (accno.length < 1) {
errors = "Please enter account nunmber nane";
}
}
if (errors) {
alert(errors);
return false;
}
/1 submt the form
return true;
}
</script>
>
&ht m <</ head>>
}
}

As you could see, the %OAuth2.Server.Properties class contains several arrays, that are passed around. These
are:

- RequestProperties — contains parameters from authorization request
- CustomProperties — container for exchanging data between above mention
- ResponseProperties — container for properties to be added to JSON response object to atoken request

- ServerProperties — contains shared properties that authorization server exposes to customization code (e.g.
logouri, clienturi etc...)

Further it contains several “claims” properties, that are used to specify what claims have to be returned by the
authorization server.

In order to call this authentication page correctly, we modified our initial client page code so it looks like this:

set scope="openid profil e scopel scope2 account"
/1 this data conmes fromapplication (a formdata or so...) and sets a context for ou
r request
/1 we can, through subclassing the Authenticate class, display this data to user so
he/ she can deci de
/1 whether to grant access or not
set properties("accno")="75-452152122-5320"
set url =##cl ass(%SYS. QAut h2. Aut hori zati on) . Get Aut hori zat i onCodeEndpoi nt (
.. #QAUTH2 APPNANME
scope,
.. #OAUTH2CL| ENTREDI RECTURI
. properties,
. i sAut hori zed,
. SC)
if $$$I SERR(sc) {

Page 14 of 16



InterSystems IRIS Open Authorization Framework (OAuth 2.0) implementation - part 3
Published on InterSystems Developer Community (https://community.intersystems.com)

write "CGetAut horizati onCodeEndpoi nt Error="
wite ..EscapeHTM ($system Status. Get Error Text (sc))_"<br>",!

}

As you can see, we added account scope and properties array node “accno” with a context value, which can
originate at different part of our application. This value is passed inside access token to the resource server for
further processing.

There is a real life scenario that uses the above described logic — the FHIR standard for exchanging electronic
patient records.

Debugging

The OAUTH framework comes with built-in debugging. This is very helpful as all communication between client and
servers is encrypted. The debugging feature allows to capture traffic data generated by the API classes before they
are sent over the wire. In order to debug your code, you can implement a simple routine or class according to the
code below. Please bear in mind that you need to implement this code at all communicating InterSystems IRIS
instances! In that case, you better provide a filename with name indicating its role within the process of OAUTH
flow. (The sample code below is saved as rr.mac routine, but the name is up to you.)

/1 d start”rr()
start() public {
new $nanmespace
set $nanmespace="%sys"
kill "9 SCLOG
set "% SCLOG=5
set "9 SCLOE " Cat egory", "QAut h2") =5
set "% SCLOGE " Cat egory", "QAut h2Server") =5
qui t

/1 d stop”rr()
stop() public {
new $nanespace
set $nanespace="%sys"
set "% SCLOG=0
set "9 SCLOE " Cat egory", "QAut h2") =0
set "9 SCLOE " Cat egory", "QAut h2Server") =0
qui t

/1 display”rr()
di splay() public {
new $nanespace
set $nanespace="%sys"
do ##cl ass(%Aut h2. Utils). D splayLog("c:\tenp\oauth2_auth_server.| og")
qui t
}

Then, before you start testing, open a terminal and invoke d start*rr() at all InterSystems IRIS nodes (client, auth
server or resource server). Once you're finished, run d stop”rr() and d display”rr() to populate log files.

Summary

In this series of articles, we have learned how to use InterSystems IRIS OAuth 2.0 implementation. Beginning with

Page 15 of 16



InterSystems IRIS Open Authorization Framework (OAuth 2.0) implementation - part 3
Published on InterSystems Developer Community (https://community.intersystems.com)

simple client application demonstration in part 1, followed by complex sample described in part 2. Finally, we
described most important classes of the OAuth 2.0 implementation and explained when they should be called

within user applications.

My special thanks to Marvin Tener, for his endless patience when replying to my, sometimes dumb, questions and
for reviewing the series.

#Authentication #Access control #0Auth? #Security #Caché #Ensemble #InterSystems IRIS

______________________________________________________________________________________________________________________________________________________________________|
Source
URL:https://community.intersystems.com/post/intersystems-iris-open-authorization-framework-

oauth-20-implementation-part-3

Page 16 of 16


https://community.intersystems.com/tags/authentication
https://community.intersystems.com/tags/access-control
https://community.intersystems.com/tags/oauth2
https://community.intersystems.com/tags/security
https://community.intersystems.com/tags/cach%C3%A9
https://community.intersystems.com/tags/ensemble
https://community.intersystems.com/tags/intersystems-iris
https://community.intersystems.com/post/intersystems-iris-open-authorization-framework-oauth-20-implementation-part-3
https://community.intersystems.com/post/intersystems-iris-open-authorization-framework-oauth-20-implementation-part-3

