
Producing JSON from SQL
Published on InterSystems Developer Community (https://community.intersystems.com)

 Article
 Stefan Wittmann · Jun 16, 2016 4m read

Producing JSON from SQL
Recently I have been posting some updates to our JSON capabilities and I am very glad that so many of you
provided feedback. Today I would like to focus on another facet: Producing JSON with a SQL query.

Clearly, SQL is a significant concept to retrieve records from your relational model. Assume you want to query data
and expose it as a simple JSON structure to a REST service. Usually, you have to query your data, then iterate
over the result set and finally construct a JSON structure for each record. You have to write custom code.

We have added standard SQL functions to make it easier for you to directly produce JSON from a SQL query
without writing code: JSON_OBJECT and JSON_ARRAY . These two functions are new in Caché 2016.2.

Assume the following table Baking.Pastry for the examples:
Row Type Description

1 Choux Pastry A light pastry that is often filled with cream

2 Puff Pastry Many layers that cause the pastry to expand or puff when baked

3 Filo Pastry Multiple layers of a paper-thin dough wrapped around a filling

JSON_OBJECT
JSON_OBJECT is a function that takes multiple key-value pairs and produces a JSON object.

SELECT JSON_OBJECT('pastry_type' : Type, 'pastry_description' : Description) AS pastr
yJSON FROM Baking.Pastry

Row pastryJSON

---- ---------------

1 {"pastry_type" : "Choux Pastry", "pastry_description" : "A light pastry that i
s often filled with cream"}

2 {"pastry_type" : "Puff Pastry", "pastry_description" : "Many layers that cause
 the pastry to expand or puff when baked"}

3 {"pastry_type" : "Filo Pastry", "pastry_description" : " Multiple layers of a
paper-thin dough wrapped around a filling"}

In this example, the JSON_OBJECT function produces one JSON object for each record. Each object contains two
properties pastry_type and pastry_description , as we provided two arguments to the function. Each argument
consists of two parts, delimited by a colon:

1. The name of the key that should be injected into the object

Page 1 of 3

https://community.intersystems.com/user/stefan-wittmann
https://community.intersystems.com/post/introducing-new-json-capabilities-cach%C3%A9-20161

Producing JSON from SQL
Published on InterSystems Developer Community (https://community.intersystems.com)

2. The value associated with that key

This example sets static keys as I just provided a string literal, e.g. 'pastry_type' . For the value I am referring to a
column, e.g. Type and whatever the content of that column is will be set as the value of the associated key. This is
a common use case for constructing a JSON object, but by passing in a column for the key you can also create
keys dynamically.

JSON_ARRAY
JSON_ARRAY works in a similar way. It constructs a JSON array and every argument that is passed in will push
the corresponding value onto the array.

SELECT JSON_ARRAY(Type, Description) AS pastryJSON FROM Baking.Pastry

Row pastryJSON

---- ---------------

1 ["Choux Pastry" , "A light pastry that is often filled with cream"]

2 ["Puff Pastry" , "Many layers that cause the pastry to expand or puff when baked
"]

3 ["Filo Pastry" , "Multiple layers of a paper-
thin dough wrapped around a filling"]

JSON_ARRAY is a pretty straightforward function. This example creates an array, which holds two elements for
each row. The first item is populated by the value of the column Type, while the second item is filled with the value
of the column Description.

Advanced scenarios
Maybe you have the requirement to create a more complex JSON structure. A value argument can be a nested
JSON_ARRAY or JSON_OBJECT function call, allowing you to construct nested JSON structures. Let’s take the
first example and wrap the JSON object in a header structure:

SELECT JSON_OBJECT('food_type' : 'pastry', 'details' : JSON_OBJECT('type' : Type, 'de
scription' : Description)) AS pastryJSON FROM Baking.Pastry

Row pastryJSON

---- ---------------

1 {"food_type" : "pastry", "details" : {"type" : "Choux Pastry", "description" : "
A light pastry that is often filled with cream"}}

2 {"food_type" : "pastry", "details" : {"type" : "Puff Pastry", "description" : "
Many layers that cause the pastry to expand or puff when baked"}}

3 {"food_type" : "pastry", "details" : {"type" : "Filo Pastry", "description" : "
Multiple layers of a paper-thin dough wrapped around a filling"}}

There are more JSON SQL functions we plan to implement in future releases, but these two are a solid start. The

Page 2 of 3

Producing JSON from SQL
Published on InterSystems Developer Community (https://community.intersystems.com)

major use case is to construct simple JSON elements from your relational data without writing code. This way
allows you to publish JSON from a system, even if you can’t change the backend.

For creating more complex structures it is more efficient to build them with the new composition interface, which
allows you to transform a persistent/registered object into a dynamic object/array. You can then easily modify the
structure as you see fit and finally export it to a JSON string with a $toJSON() call. I will cover this topic in more
detail in a future post.

#Best Practices #Caché #JSON #SQL

 Source URL:https://community.intersystems.com/post/producing-json-sql

Page 3 of 3

https://community.intersystems.com/tags/best-practices
https://community.intersystems.com/tags/cach%C3%A9
https://community.intersystems.com/tags/json
https://community.intersystems.com/tags/sql
https://community.intersystems.com/post/producing-json-sql

