
InterSystems IRIS Open Authorization Framework (OAuth 2.0) implementation - part 2
Published on InterSystems Developer Community (https://community.intersystems.com)

 Article
 Daniel Kutac · Aug 10, 2016 22m read

InterSystems IRIS Open Authorization Framework (OAuth 2.0)
implementation - part 2
Created by Daniel Kutac, Sales Engineer, InterSystems

Warning: if you get confused by URLs used: the original series used screens from machine called dk-gs2016. The
new screenshots are taken from a different machine. You can safely treat url WIN-U9J96QBJSAG as if it was dk-
gs2016.

Part 2. Authorization server, OpenID Connect server

In the previous part of this short series, we have learned about simple use case ‒ acting as an OAUTH[1] client.
Now, it’s time to bring our experience to a whole new level. We are going to build much more complex
environment, where InterSystems IRIS is going to play all OAUTH roles.

We know already how to make a client, so let’s concentrate on authorization server and even more, the OpenID
Connect[2] provider.

As in the previous part, we need to prepare environment. This time it is going to be trickier, as there are more
moving parts.

Before we go into the details of our example, we need to spend a few words about OpenID Connect.

As you may recall from previous part, we were asked ‒ in order to be authorized by Google ‒ to authenticate
ourselves with Google first. The authentication is not part of OAUTH framework. In fact, there are many
authentication frameworks around, independent of OAUTH. One of them is called OpenID. Started originally as an
independent initiative, it recently leverages infrastructure provided by OAUTH framework, namely communication
and data structures. Thus, OpenID Connect was born. In fact, many people call it OAUTH on steroids. Indeed, with
OpenID Connect, you can not only authorize, but also authenticate using well known interfaces of OAUTH
framework.

Complex OpenID Connect demo
We will leverage much of the client code from the part 1. This saves us a lot of work, so we can concentrate on
setting up environment.

Prerequisites
This time we need to add, to already existing web server with SSL enabled, a PKI infrastructure. We need some
cryptography required by OpenID Connect. If you want authenticate someone, you want to be absolutely sure that
no-one else can impersonate the agent (client, auth server,...) who sends his/her confidential data over the
network. This is where X.509 based cryptography comes in.
Please note: beginning with Cache 2017.1, it is no more needed to use X.509 Certificates to generate JWT / JWKS
(JSON Web Key Set). We, for the backward compatibility and simplicity, use this option.

PKI

Page 1 of 24

https://community.intersystems.com/user/daniel-kutac
https://community.intersystems.com/post/cach%C3%A9-open-authorization-framework-oauth-20-implementation-part-1

InterSystems IRIS Open Authorization Framework (OAuth 2.0) implementation - part 2
Published on InterSystems Developer Community (https://community.intersystems.com)

Strictly said, we do not need to use Caché PKI infrastructure at all, but it is more convenient way than using tools
like openssl directly to generate all certificates.

We are not going into details of generating certificates here, as you can find details either within InterSystems IRIS
documentation or elsewhere. As a result of generating certificates, we will create 3 public/private key pairs and
associated certificates.

Let’s call them

· root_ca (root_ca.cer) for our issuing certification authority

· auth (auth.cer and auth.key) for authorization & OpenID server

· client (client.cer and client.key) for client application server

X.509 Credentials

We need to define X.509 credentials at individual servers so they can sign and validate JSON Web Tokens (JWT)
exchanged during our demo

Authorization & Authentication server configuration

Without going into details about how to define X.509 Credentials, we just show a screenshot of AUTHSERVER
instance credentials.

As image indicates, the AUTHSERVER owns its private key and certificate , whilst it only has certificate with public
key of the CLIENT

Client server configuration

And similarly, credentials defined at CLIENT instance

Page 2 of 24

http://docs.intersystems.com/latest/csp/docbook/DocBook.UI.Page.cls?KEY=GCAS_pki#GCAS_C157792

InterSystems IRIS Open Authorization Framework (OAuth 2.0) implementation - part 2
Published on InterSystems Developer Community (https://community.intersystems.com)

Here the CLIENT owns private key and certificate, but only certificate with public key of AUTHSERVER.

Resource server configuration

We do not need to define X509 credentials at RESSERVER instance in our example setup.

OAUTH Configuration
Similarly to configuration described in part 1 of this series, we need to configure our servers for OAUTH. Let’s start
with AUTHSERVER instance, as this is the central component in overall OAUTH configuration.

AUTHSERVER

In System Management Portal, navigate to System Administration > Security > OAuth 2.0 > Server Configuration.

Click the menu link and fill form items:

· host name

· port (optional)

· prefix (optional) ‒ these three fields compose Issuer endpoint

· specify conditions for return refresh token

· check supported grant types, for our demo just check all four types. However only Authorization code is used.

· optionally check Audience required ‒ this adds aud property into authorization code and implicit requests

· optionally check Support user session - this means that an httpOnly cookie is used by the authorization
server to keep the current user of this browser logged in. The second and subsequent requests for the access
token will not prompt for user name and password.

· specify endpoint intervals

· define scopes supported by this server

· accept default or enter custom values of customization options ‒ please note ‒ change Generate token class
valued from %OAuth2.Server.Generate to %OAuth2.Server.JWT so that a JWT is used as the access token rather
than just an opaque token.

· provide name of registered SSL configuration to establish SSL over HTTP as required by OAuth 2.0

· Fill in settings for JSON Web Token (JWT)

Here is a screenshot of sample configuration

Page 3 of 24

InterSystems IRIS Open Authorization Framework (OAuth 2.0) implementation - part 2
Published on InterSystems Developer Community (https://community.intersystems.com)

Page 4 of 24

InterSystems IRIS Open Authorization Framework (OAuth 2.0) implementation - part 2
Published on InterSystems Developer Community (https://community.intersystems.com)

Page 5 of 24

InterSystems IRIS Open Authorization Framework (OAuth 2.0) implementation - part 2
Published on InterSystems Developer Community (https://community.intersystems.com)

Having defined server configuration, we need to supply server client configuration. Within the page with server
configuration form, click Client Configurations button and then press Create New Configuration for your CLIENT
and RESSERVER instances.

This image shows CLIENT configuration.

Page 6 of 24

InterSystems IRIS Open Authorization Framework (OAuth 2.0) implementation - part 2
Published on InterSystems Developer Community (https://community.intersystems.com)

Leave JWT Token tab empty - with default values. As you can see, we populated fields with meaningless data,
unlike in real application case.

And similarly, RESSERVER configuration

Page 7 of 24

InterSystems IRIS Open Authorization Framework (OAuth 2.0) implementation - part 2
Published on InterSystems Developer Community (https://community.intersystems.com)

As you can see, there is only very basic information needed for resource server, namely you need to set client type
to Resource server. With CLIENT, you need to provide more information, the Client type (confidential as our client
runs as web application capable of keeping client secret at server, not sending it to client agent).

CLIENT

In SMP, navigate to System Administration > Security > OAuth 2.0 > Client Configurations.

Click Create Server Configuration button, fill the form and save it.

Page 8 of 24

InterSystems IRIS Open Authorization Framework (OAuth 2.0) implementation - part 2
Published on InterSystems Developer Community (https://community.intersystems.com)

Make sure that Issuer Endpoint corresponds to the value we defined earlier at the AUTHSERVER instance! You
also need to modify authorization server endpoints according to your web server configuration. In our case we just
embedded ‘authserver’ into each input field.

Now, click Client Configurations link next to the newly created Issuer Endpoint and click Create Client Configuration
button.

Page 9 of 24

InterSystems IRIS Open Authorization Framework (OAuth 2.0) implementation - part 2
Published on InterSystems Developer Community (https://community.intersystems.com)

Page 10 of 24

InterSystems IRIS Open Authorization Framework (OAuth 2.0) implementation - part 2
Published on InterSystems Developer Community (https://community.intersystems.com)

Good! At this moment we have both CLIENT and AUTHSERVER configured. That could be enough for many use
cases, as resource server may be just a namespace of AUTHSERVER, thus protected already. But let’s consider
that we want to cover a use case where an external doctor is trying to retrieve data from our internal clinical
system. So in order to allow such doctor to retrieve data, we definitely want to store his account information INSIDE
our resource server for auditing and forensic reasons. In that case, we need to continue and define configurations
at RESSERVER.

RESSERVER

In SMP, navigate to System Administration > Security > OAuth 2.0 > Client Configurations.

Click Create Server Configuration button, fill the form and save it.

Page 11 of 24

InterSystems IRIS Open Authorization Framework (OAuth 2.0) implementation - part 2
Published on InterSystems Developer Community (https://community.intersystems.com)

We used discovery function here, this is a new feature implemented in Cache 2017.1

As you can see, this configuration is using the same data as corresponding configuration at CLIENT instance.

Now, click Client Configurations link next to the newly created Issuer Endpoint and click Create Client Configuration
button.

Page 12 of 24

InterSystems IRIS Open Authorization Framework (OAuth 2.0) implementation - part 2
Published on InterSystems Developer Community (https://community.intersystems.com)

Creating WT from X.509 Credentials is not recommended, but we used it for compatibility.

Oh yes! Indeed, this was tedious, but necessary process. But now we can move forward, and start coding!

Client Application
To keep things as simple as possible, we will recycle much of code from our Google example we described in part
1.

The client application is just two CSP pages, running in /csp/myclient application, with no security enforced ‒ it just
runs as unauthenticated user.

Page 13 of 24

InterSystems IRIS Open Authorization Framework (OAuth 2.0) implementation - part 2
Published on InterSystems Developer Community (https://community.intersystems.com)

Page 1

Class Web.OAUTH2.Cache1N Extends %CSP.Page
{

Parameter OAUTH2CLIENTREDIRECTURI = "https://dk-
gs2016/client/csp/myclient/Web.OAUTH2.Cache2N.cls";

Parameter OAUTH2APPNAME = "demo client";

ClassMethod OnPage() As %Status
{
 &html<<html>
<head>
 <style>

 .portalLogo {
 color: rgb(53,107,141);
 position: relative;
 font-weight: bold;
 font-size: 12pt;
 top: 0px;
 right: 0px;
 border: 2px solid rgb(53,107,141);
 padding: 2px;
 padding-left: 5px;
 padding-right: 5px;
 border-radius: 4px;
 background: #E0E0F0;
}

.portalLogoBox {
 position: static;
 padding: 10px;
 padding-bottom: 4px;
 padding-right: 30px;
 text-align: center;
}

.portalLogoSub {
 position: relative;
 color: #808080;
 font-size: 8pt;
 top: 3px;
 right: 0px;
}

 </style>

</head>
<body>
 <h1>Authenticating and Authorizing against Cache´ OAuth2 provider</h1>
 <p>This page demo shows how to call Cache´ API functions using OAuth2 authori
zation.
 <p>We are going to call Cache´ authentication and authorization server to gra
nt our application access to data stored at another
 Cache´ server.

Page 14 of 24

InterSystems IRIS Open Authorization Framework (OAuth 2.0) implementation - part 2
Published on InterSystems Developer Community (https://community.intersystems.com)

 >

 // Get the url for authorization endpoint with appropriate redirect and scopes.
 // The returned url is used in the button below.

 // DK: use 'dankut' account to authenticate!
 set scope="openid profile scope1 scope2"
 set url=##class(%SYS.OAuth2.Authorization).GetAuthorizationCodeEndpoint(
 ..#OAUTH2APPNAME,
 scope,
 ..#OAUTH2CLIENTREDIRECTURI,
 .properties,
 .isAuthorized,
 .sc)
 if $$$ISERR(sc) {
 write "GetAuthorizationCodeEndpoint Error="
 write ..EscapeHTML($system.Status.GetErrorText(sc))_"
",!
 }

 &html<
 <div class="portalLogoBox">Authorize for IS
C</div>
 </body></html>>
 Quit $$$OK
}

ClassMethod OnPreHTTP() As %Boolean [ServerOnly = 1]
{
 #dim %response as %CSP.Response
 set scope="openid profile scope1 scope2"
 if ##class(%SYS.OAuth2.AccessToken).IsAuthorized(..#OAUTH2APPNAME,,scope,.accessTok
en,.idtoken,.responseProperties,.error) {
 set %response.ServerSideRedirect="Web.OAUTH2.Cache2N.cls"
 }
 quit 1
}

}

Page 2

Class Web.OAUTH2.Cache2N Extends %CSP.Page
{

Parameter OAUTH2APPNAME = "demo client";

Parameter OAUTH2ROOT = "https://dk-gs2016/resserver";

Parameter SSLCONFIG = "SSL4CLIENT";

ClassMethod OnPage() As %Status
{
 &html<<html>
<head>
</head>

Page 15 of 24

InterSystems IRIS Open Authorization Framework (OAuth 2.0) implementation - part 2
Published on InterSystems Developer Community (https://community.intersystems.com)

<style>
body { font-family: verdana; }

h4 { color:#2080E0 ;}
</style>

<body>>

 // Check if we have an access token from oauth2 server
 set isAuthorized=##class(%SYS.OAuth2.AccessToken).IsAuthorized(..#OAUTH2APPNAME,,
"scope1 scope2",.accessToken,.idtoken,.responseProperties,.error)

 // Continue with further checks if an access token exists.
 // Below are all possible tests and may not be needed in all cases.
 // The JSON object which is returned for each test is just displayed.
 if isAuthorized {
 write "<h3>Authorized!</h3>",!

 // Validate and get the details from the access token, if it is a JWT.
 set valid=##class(%SYS.OAuth2.Validation).ValidateJWT(..#OAUTH2APPNAME,access
Token,"scope1 scope2",,.jsonObject,.securityParameters,.sc)
 if $$$ISOK(sc) {
 if valid {
 write "Valid JWT"_"
",!
 } else {
 write "Invalid JWT"_"
",!
 }
 write "Access token="
 do jsonObject.%ToJSON()
 write "
",!
 } else {
 write "JWT Error="_..EscapeHTML($system.Status.GetErrorText(sc))_"
",!

 }
 write "
",!

 // Call the introspection endpoint and display result -- see RFC 7662.
 set sc=##class(%SYS.OAuth2.AccessToken).GetIntrospection(..#OAUTH2APPNAME,acc
essToken,.jsonObject)
 if $$$ISOK(sc) {
 write "Introspection="
 do jsonObject.%ToJSON()
 write "
",!
 } else {
 write "Introspection Error="_..EscapeHTML($system.Status.GetErrorText(sc)
)_"
",!
 }
 write "
",!

 if idtoken'="" {
 // Validate and display the IDToken -- see OpenID Connect Core specificat
ion.
 set valid=##class(%SYS.OAuth2.Validation).ValidateIDToken(
 ..#OAUTH2APPNAME,
 idtoken,
 accessToken,,,
 .jsonObject,
 .securityParameters,

Page 16 of 24

InterSystems IRIS Open Authorization Framework (OAuth 2.0) implementation - part 2
Published on InterSystems Developer Community (https://community.intersystems.com)

 .sc)
 if $$$ISOK(sc) {
 if valid {
 write "Valid IDToken"_"
",!
 } else {
 write "Invalid IDToken"_"
",!
 }
 write "IDToken="
 do jsonObject.%ToJSON()
 write "
",!
 } else {
 write "IDToken Error="_..EscapeHTML($system.Status.GetErrorText(sc))_
"
",!
 }
 } else {
 write "No IDToken returned"_"
",!
 }
 write "
",!

 // not needed for the application logic, but provides information about user
that we can pass to Delegated authentication

 // Call the userinfo endpoint and display the result -- see OpenID Connect Co
re specification.
 set sc=##class(%SYS.OAuth2.AccessToken).GetUserinfo(
 ..#OAUTH2APPNAME,
 accessToken,,
 .jsonObject)
 if $$$ISOK(sc) {
 write "Userinfo="
 do jsonObject.%ToJSON()
 write "
",!
 } else {
 write "Userinfo Error="_..EscapeHTML($system.Status.GetErrorText(sc))_"<b
r>",!
 }
 write "<p>",!

 /***
 * *
 * Call the resource server and display result. *
 * *
 ***/

 // option 1 - resource server - by definition - trusts data coming from autho
rization server,
 // so it serves data to whoever is asking
 // as long as access token passed to resource server is valid

 // option 2 - alternatively, you can use delegated authentication (OpenID Con
nect)
 // and call into another CSP application (with delegated authentication prot
ection)
 // - that's what we do here in this demo

 write "<h4>Call resource server (delegated auth)","</h4>",!
 set httpRequest=##class(%Net.HttpRequest).%New()
 // AddAccessToken adds the current access token to the request.

Page 17 of 24

InterSystems IRIS Open Authorization Framework (OAuth 2.0) implementation - part 2
Published on InterSystems Developer Community (https://community.intersystems.com)

 set sc=##class(%SYS.OAuth2.AccessToken).AddAccessToken(
 httpRequest,,
 ..#SSLCONFIG,
 ..#OAUTH2APPNAME)
 if $$$ISOK(sc) {
 set sc=httpRequest.Get(..#OAUTH2ROOT_"/csp/portfolio/oauth2test.demoResou
rce.cls")
 }
 if $$$ISOK(sc) {
 set body=httpRequest.HttpResponse.Data
 if $isobject(body) {
 do body.Rewind()
 set body=body.Read()
 }
 write body,"
",!
 }
 if $$$ISERR(sc) {
 write "Resource Server Error="_..EscapeHTML($system.Status.GetErrorText(s
c))_"
",!
 }
 write "
",!

 write "<h4>Call resource server - no auth, just token validity check","</h4>"
,!
 set httpRequest=##class(%Net.HttpRequest).%New()
 // AddAccessToken adds the current access token to the request.
 set sc=##class(%SYS.OAuth2.AccessToken).AddAccessToken(
 httpRequest,,
 ..#SSLCONFIG,
 ..#OAUTH2APPNAME)
 if $$$ISOK(sc) {
 set sc=httpRequest.Get(..#OAUTH2ROOT_"/csp/portfolio2/oauth2test.demoReso
urce.cls")
 }
 if $$$ISOK(sc) {
 set body=httpRequest.HttpResponse.Data
 if $isobject(body) {
 do body.Rewind()
 set body=body.Read()
 }
 write body,"
",!
 }
 if $$$ISERR(sc) {
 write "Resource Server Error="_..EscapeHTML($system.Status.GetErrorText(s
c))_"
",!
 }
 write "
",!
 } else {
 write "Not Authorized!<p>",!
 write "Authorize me"
 }
 &html<</body></html>>
 Quit $$$OK
}

}

Following screenshots illustrate processing:

Page 18 of 24

InterSystems IRIS Open Authorization Framework (OAuth 2.0) implementation - part 2
Published on InterSystems Developer Community (https://community.intersystems.com)

Authorization / OpenID Connect Authentication server login page at AUTHSERVER instance

User consent page at AUTHSERVER

And, finally, resulting page

Page 19 of 24

InterSystems IRIS Open Authorization Framework (OAuth 2.0) implementation - part 2
Published on InterSystems Developer Community (https://community.intersystems.com)

As you could see, reading through the code, indeed, there is almost no difference to client code we showed in part
1. There is something new that comes with page 2. This is some debugging information, and checking validity of
JWT. Once we validated returned JWT, we could introspect data coming from AUTHSERVER about the user
identity. We simply presented this information to the page output, but we can do more with it. As in the above
mentioned use case of an external doctor, we can use the identity information and pass it to the resource server for
the authentication purposes if required. Or just passing this information as parameter to API call to resource server.

Next paragraphs will describe how we used the user identity information, in more details.

Resource Application
The resource server can be the same server as authorization / authentication server and in many cases that would
be the case. But in our demo, we made the two servers separate InterSystems IRIS instances.

So, we have two possible cases, how to work with security context on the resource server.

Alternative 1 ‒ no authentication

This is the simple case. Authorization/ authentication server are just the same Caché instance. In this case we can
simply pass access token to a csp application, which is specifically created for a single purpose ‒ serve data to
client applications that use OAUTH to authorize them to ask for data.

The configuration of the resource csp application (we called it /csp/portfolio2) can look like the screenshot below.

Page 20 of 24

InterSystems IRIS Open Authorization Framework (OAuth 2.0) implementation - part 2
Published on InterSystems Developer Community (https://community.intersystems.com)

We put just minimum security into the application definition ‒ allowing only specific CSP page to be executed.

Alternatively, the resource server can provide a REST API instead of classic web pages. In real life scenarios, this
is all up to the user to fine-tune security context.

An example of source code:

Class oauth2test.demoResource Extends %CSP.Page
{

ClassMethod OnPage() As %Status
{
 set accessToken=##class(%SYS.OAuth2.AccessToken).GetAccessTokenFromRequest(.sc)
 if $$$ISOK(sc) {
 set sc=##class(%SYS.OAuth2.AccessToken).GetIntrospection("RESSERVER resource"
,accessToken,.jsonObject)
 if $$$ISOK(sc) {
 // optionally validate against fields in jsonObject

 w "<p><h3>Hello from Caché server: <i>/csp/portfolio2</i> applicat
ion!</h3>"
 w "<p>running code as $username = "_$username_" with following
$roles = "_$roles_" at node "_$p($zu(86),"*",2)_"."
 }
 } else {
 w "<h3>NOT AUTHORIZED!</h3>"
 w "<pre>"
 w

Page 21 of 24

InterSystems IRIS Open Authorization Framework (OAuth 2.0) implementation - part 2
Published on InterSystems Developer Community (https://community.intersystems.com)

 i $d(%objlasterror) d $system.OBJ.DisplayError()
 w "</pre>"
 }
 Quit $$$OK
}

}

Alternative 2 ‒ delegated authentication

This is another extreme case, we want to utilize user’s identity at resource server to the maximum possible extent ‒
as if the user was working with equal security context as internal users of resource server.

One of possible potions we have, is using delegated authentication.

To get this setup running, we need to perform a few more steps to configure the resource server.

· Enable Delegated Authentication

· Provide ZAUTHENTICATE routine

· Configure Web application (in our case we called in /csp/portfolio)

The ZAUTHENTICATE routine implementation is very simple and straightforward, as we trust the AUTHSERVER
who provided user identity as well as his/her scope (security profile), so we simply accept whatever username is
coming and pass it along with scope to resource server user database (with necessary translation between OAUTH
scope and InterSystems IRIS roles). That’s it. The rest is done seamlessly by InterSystems IRIS.

Here is an example of ZAUTHENTICATE routine

#include %occErrors
#include %occInclude

ZAUTHENTICATE(ServiceName, Namespace, Username, Password, Credentials, Properties) PU
BLIC
{
 set tRes=$SYSTEM.Status.OK()
 try {
 set Properties("FullName")="OAuth account "_Username
 //set Properties("Roles")=Credentials("scope")
 set Properties("Username")=Username
 //set Properties("Password")=Password
 // temporary hack as currently we can't pass Credentials array from GetCreden
tials() method
 set Properties("Password")="xxx" // we don't really care about oauth2 acco
unt password
 set Properties("Roles")=Password
 } catch (ex) {
 set tRes=$SYSTEM.Status.Error($$$AccessDenied)
 }
 quit tRes
}

GetCredentials(ServiceName,Namespace,Username,Password,Credentials) Public
{
 s ts=$zts

Page 22 of 24

InterSystems IRIS Open Authorization Framework (OAuth 2.0) implementation - part 2
Published on InterSystems Developer Community (https://community.intersystems.com)

 set tRes=$SYSTEM.Status.Error($$$AccessDenied)

 try {
 If ServiceName="%Service_CSP" {
 set accessToken=##class(%SYS.OAuth2.AccessToken).GetAccessTokenFromReques
t(.sc)
 if $$$ISOK(sc) {
 set sc=##class(%SYS.OAuth2.AccessToken).GetIntrospection("RESSERVER r
esource",accessToken,.jsonObject)
 if $$$ISOK(sc) {
 // todo: watch out for potential collision between standard accou
nt and delegated (openid) one!
 set Username=jsonObject.username
 set Credentials("scope")=$p(jsonObject.scope,"openid profile ",2)
 set Credentials("namespace")=Namespace
 // temporary hack
 //set Password="xxx"
 set Password=$tr(Credentials("scope")," ",",")
 set tRes=$SYSTEM.Status.OK()
 } else {
 set tRes=$SYSTEM.Status.Error($$$GetCredentialsFailed)
 }
 }
 } else {
 set tRes=$SYSTEM.Status.Error($$$AccessDenied)
 }
 } catch (ex) {
 set tRes=$SYSTEM.Status.Error($$$GetCredentialsFailed)
 }
 Quit tRes
}

The CSP page itself can then be very simple:

Class oauth2test.demoResource Extends %CSP.Page
{

ClassMethod OnPage() As %Status
{
 // access token authentication is performed by means of Delegated authentication!
 // no need to do it, again, here

 // This is a dummy resource server which just gets the access token from the requ
est and
 // uses the introspection endpoint to ensure that the access token is valid.
 // Normally the response would not be security related, but would contain some in
teresting
 // data based on the request parameters.
 w "<p><h3>Hello from Caché server: <i>/csp/portfolio</i> application!</h3>
"
 w "<p>running code as $username = "_$username_" with following $roles =
 "_$roles_" at node "_$p($zu(86),"*",2)_"."
 Quit $$$OK
}

}

Page 23 of 24

InterSystems IRIS Open Authorization Framework (OAuth 2.0) implementation - part 2
Published on InterSystems Developer Community (https://community.intersystems.com)

And, lastly, the Web application configuration for /csp/portfolio

If you were really paranoid, you could set Permitted classes as we did in first variant. Or, again, use REST API. But
all this is way beyond the scope of our topic.

Next time, we are going to explain individual classes, introduced by the InterSystems IRIS OAUTH framework. We
will describe their APIs, and when / where to call them.

[1] Whenever we mention OAUTH we mean OAuth 2.0 as specified in RFC 6749 - https://tools.ietf.org/html/rfc6749
. We use shortcut OAUTH just for simplicity.

[2] OpenID Connect is maintained by OpenID Foundation ‒ http://openid.net/connect

#Authentication #Access control #Best Practices #OAuth2 #Security #Caché #Ensemble #InterSystems IRIS

 Source
URL:https://community.intersystems.com/post/intersystems-iris-open-authorization-framework-
oauth-20-implementation-part-2

Page 24 of 24

https://tools.ietf.org/html/rfc6749
http://openid.net/connect
https://community.intersystems.com/tags/authentication
https://community.intersystems.com/tags/access-control
https://community.intersystems.com/tags/best-practices
https://community.intersystems.com/tags/oauth2
https://community.intersystems.com/tags/security
https://community.intersystems.com/tags/cach%C3%A9
https://community.intersystems.com/tags/ensemble
https://community.intersystems.com/tags/intersystems-iris
https://community.intersystems.com/post/intersystems-iris-open-authorization-framework-oauth-20-implementation-part-2
https://community.intersystems.com/post/intersystems-iris-open-authorization-framework-oauth-20-implementation-part-2

