InterSystems IRIS Open Authorization Framework (OAuth 2.0) implementation - part 1
Published on InterSystems Developer Community (https://community.intersystems.com)

Article
Daniel Kutac - Augs, 2016 13 read

InterSystems IRIS Open Authorization Framework (OAuth 2.0)
implementation - part 1

This article, and following two articles of the series, is intended as a user guide for developers or system
administrators, who need to work with OAuth 2.0 framework (further referred to as OAUTH for simplicity) in their
InterSystems product based applications.

Created by Daniel Kutac, Senior Sales Engineer, InterSystems

History of post-publishing corrections and changes

* August 3, 2016 - fixed Google Client configuration screenshot, updated Google APIs screenshot to reflect
new version of pages

* August 28, 2016 - changes to JSON related code, reflecting changes to Cache 2016.2 JSON support.

* May 3 2017 - updates to text and screens to reflect new Ul and features released with Cache 2017.1

* February 19 2018 - changed Caché to InterSystems IRIS to reflect latest development. Please bear in
mind, however, that despite the change in product name, the article covers all InterSystems products -
InterSystems IRIS Data Platform, Ensemble and Caché.

* August 17 2020 - everythiong changes, and software even more. Please consult reply from Micholai
Mitchko for updated Google's Oauth2 url.

Part 1. Client

Introduction

This is the first part of 3 part series of articles about the InterSystems implementation of the Open Authorization
Framework.

In this first part, we give a short introduction to the topic and show a simple scenario where InterSystems IRIS
application acts as a client to an Authorization server, requesting some protected resources.

The second part will describe a more complex scenario, where InterSystems IRIS itself acts as an authorization
server and also as an authentication server via OpenlD Connect.

The last part of this series will describe individual parts of OAUTH framework classes as they are implemented by
InterSystems IRIS.

What is Open Authorization Framework about

Many of you have already had a chance to hear about Open Authorization Framework and what is can be used for.
So just a brief summary for those who have not heard about it yet.

Open Authorization Framework, OAUTH, currently at version 2.0, is a protocol allowing primarily web based
application to Exchange information in a secured way by establishing indirect trust between a client (application

Page 1 of 12

https://community.intersystems.com/user/daniel-kutac

InterSystems IRIS Open Authorization Framework (OAuth 2.0) implementation - part 1
Published on InterSystems Developer Community (https://community.intersystems.com)

requesting data) and a resource owner (application holding requested data). The trust itself is provided by a body
that both client and resource server recognize and trust. This body is called the authorization server.

A simple illustration use case follows:

Suppose Jenny (in OAUTH terminology the Resource owner) works on a project in company JennyCorp. She
creates a project plan for a larger potential business and invites her business partner John (client user) from
Johninc to review the document. She is not happy, though, to give John access to her company’s VPN so she puts
the document onto a Google Drive (the Resource server) or other similar cloud storage. By doing that, she had
established a trust between her and Google (the Authorization server). She marks the document for sharing with
John (John already uses Google Drive service and Jenny knows his email).

When John wants to read the document, he authenticates himself to his Google account and from his mobile
device (tablet, notebook, etc.) he launches a document editor (the Client server) and loads Jenny’s project file.

Whilst it sounds quite simple, there is a lot of communication between the two persons and Google. All
communication follows the OAuth 2.0 specification, so John'’s client — the reader application — has to authenticate
first with Google (this step is not covered by OAUTH) and once authorized by John applying a consent on Google
provided form, Google authorizes the reader application to access the document by issuing an access token. The
reader application uses the access token to issue a request to Google Drive service in order to retrieve Jenny'’s file.

The diagram below illustrates communication between individual parties

Page 2 of 12

InterSystems IRIS Open Authorization Framework (OAuth 2.0) implementation - part 1
Published on InterSystems Developer Community (https://community.intersystems.com)

BROWSER CLIENT SERVER AUTHORIZATION SERVER REROGURGCE SERVER
[Request Acess } e?
Redirect to Authorization
T T T T T - Server
|
|
[
i
[Request Login } { Deliver Login Page J

|
E 1
Enter Login details and send ™ .
[to autt . J '_)[t to Client

[User Valid and Authorized]——D[Get Access Token]——D{ Return Access Token]

T Validate Access
I Token

% D
[Get data } ;{ Return Data
(:)q= :{ Display data i

Generue
Web Page

Please note: whilst all OAUTH 2.0 communication is using HTTP requests, servers do not have to be web
applications at all.

Let’s illustrate this simple scenario with InterSystems IRIS.

Simple Google Drive demo

In this demonstration we would create a small CSP based application that would request resources (list of files)
stored at Google Drive service with our own account (and also a list of our calendars as a bonus).

Prerequisites

Before we can start with application coding, we need to prepare environment. This includes a web server with SSL
enabled and a Google profile.

Web Server configuration

Page 3 of 12

InterSystems IRIS Open Authorization Framework (OAuth 2.0) implementation - part 1
Published on InterSystems Developer Community (https://community.intersystems.com)

As stated above, we need to communicate to the Authorization server with SSL, as this is required by OAuth 2.0 by
default. We want to keep our data secure, right?

It is out of scope of this article to explain how to configure a webserver to support SSL, so please refer to user
manuals of a respective web server of your preference. For your curiosity (as we may later show some
screenshots) we will, in this particular example, use Microsoft IIS server.

Google configuration

In order to register ourselves to Google, we need to use Google API Manager -
https://console.developers.google.com/apis/library?project=globalsummit2016demo

For the purpose of the demonstration, we created an account GlobalSummit2016Demo. Make sure we have
enabled the Drive API

= Go g\e APls Q GlobalSummit2016Demo ~ i D © a :
API APIManager Dashboard ENABLE API
+» Dashboard - . . - . - -
Pls are enabled automatically. You can disable them if you're not using the 1 hour | 6hours | 12 hours day | Zdays | 4days | 7days | 14 days | 30 days
m
m
Errors Median latency
o ELen b ec Perne £ r - [
There is no traffic for this time period There are no errors for this time period There is no latency data
APl ~ Reguests Errors Error ratio Latency, median Latency, 98%
Google Calendar APl - - - - - Disable
Google Cloud Logging APl - - - - - Disable
Google Cloud Storage - - - - - Disable
Google Cloud Storage JSOM AP - - - - - Disable
Google Drive AP - - - - — Disable %3¢
Googlet AP - - - - - Disable
Token Service AP| - - - - - Disable

Now, it is time to define credentials

Page 4 of 12

https://console.developers.google.com/apis/library?project=globalsummit2016demo

InterSystems IRIS Open Authorization Framework (OAuth 2.0) implementation - part 1
Published on InterSystems Developer Community (https://community.intersystems.com)

= Google APIs Q
API API Manager Credentials
«:» Dashboa
“ Download JSON Reset secret Delete
jiis
m L

Client ID for Web application

Client ID 722402813017-isbqc810163sv24s45bh6ntjua7th3c3.apps.googleusercontent.com
Client secret |
Creation date Feb 20,2016, 7:49:40 PM

Name

Web client 1
Restrictions
Enter JavaScript origins, redirect URIs
Authorized JavaScript origins

For use with requests from a browser. This is the origin URI of the client a

https://localhost

Authorized redirect URIs
F & With reauests § s wah Sanye sha nat . ation that esrs ars rediracted 1o after thay have

https://localhost/csp/google/Web. QAUTHZ2.Google2 cls

https://localhost/csp/sys/oauth2/0Auth2.Response.cls

‘E m Cancel

Please note the following.
Authorized JavaScript — we allow only scripts originating locally — relatively to calling page

Authorized redirect URIs — in theory we can redirect our client application to any site, but when using InterSystems
IRIS OAUTH implementation, we must redirect to https://localhost/csp/sys/oauth2/OAuth2.Response.cls. You can
define multiple authorized redirect URIs, as illustrated in the screenshot, but for this demo we only need the
second entry of the two.

Finally, we need to configure InterSystems IRIS as a client of the Google Authorization server

Caché configuration

InterSystems IRIS OAUTHZ2 client configuration is a two-step process. First, we need to create a Server
Configuration.

In SMP, navigate to System Administration > Security > OAuth 2.0 > Client Configurations.

Click Create Server Configuration button, fill the form and save it.

Page 5 of 12

https://localhost/csp/sys/oauth2/OAuth2.Response.cls

InterSystems IRIS Open Authorization Framework (OAuth 2.0) implementation - part 1
Published on InterSystems Developer Community (https://community.intersystems.com)

Use the form below to edit an existing OAuth 2.0 server description (entered manually):

Issuer endpoint | hitps:/faccounts.google.com/0/oauthZ/auth
Required. Endpoint URL to be used to identify the authorization server

SSLITLS configuration | GOOGLE v
Required if 35L used for discovery.

Registration access token
Optional.

Authorization server | This section describes the authorization server to be used

Authorization endpoint

https:/faccounts.google. com/fo/oauth2/auth
Required.

Token endpoint

https:/iwww googleapis.com/oauth2/vd/token
Required.

Userinfo endpoint

https:/iwww googleapis.comi/oauth2/v1/userinfo
Token introspection endpoint

Token revocation endpoint
https://accounts google com/o/oauth2/revoke

JSON Web Token (JWT) Settings | 5,,cc gther than dynamic registration

The following is a list of server metadata properties:

Mame Value

authorization_endpoint hitps:/faccounts.google. comiofoauth2/auth
token_endpoint hitps:/fwww googleapis.comfoauth2fvdfoken
userinfo_endpoint hitps:/fwww googleapis.comfoauth2 v 1/userinfo
revocation_endpoint hitps:/faccounts. google comio/oauth2irevoke

All information entered into the form can be found at Google developers console site. Please note that

InterSystems IRIS supports automatic Open ID discovery. However, as we are not using it, we entered all
information manully

Now, click Client Configurations link next to the newly created Issuer Endpoint
and click Create Client Configuration button.

Page 6 of 12

InterSystems IRIS Open Authorization Framework (OAuth 2.0) implementation - part 1
Published on InterSystems Developer Community (https://community.intersystems.com)

/ General ' Client Information JWT Settings { Client Credentials

Application name |Google
Required. Local name of the client application.

Client name |Google
Global name to be used for dynamic registration.

Description
Enabled |+
Client Type » Confidential Fublic Resource server
SSLTLS configuration | GOOGLE v

Required.

Client redirect URL | The client URL to be specified to the authorization server to receive responses.

https://localhost/csp/sys/oauth2/0Auth2.Response.cls

Use TLS/SSL

b

Host name Port Prefix
localhost

Required. Optional. Optional.

Required grant types (check at least one) ¥/ Authorization code
Implicit
Fesource owner password credentials
Client credentials

Authentication type none basic e form encoded body client secret JWT private key JWT

Leave Client Information and JWT Settings tabs empty (with default values) and fill client credentials.

General "/ Client Information J JWT Settings Client Credentials

This client's credentials Client ID

733333333328130 T-ooooouoooooxxxpktudld. apps . goegleusercontent. com
Required.
ClientID Issued At

Client secret
HXKOCKOOCNXK KK I KK
Required if client type is confdential.
Client Secret Expires At

Registration Client Uri

Please note: We are creating Confidential Client (this is more secure than public and it means that client secret
never leaves the client server application (it is never transmitted to the browser)

Further, make sure Use SSL/TLS is checked, and provide host name (localhost as we are redirecting locally to the
client application) and eventually port and prefix (this is helpful when there are multiple InterSystems IRIS instances
at the same machine). Based on the information entered, client redirect URL is computed and displayed in the
above line.

In the screenshot above, we supplied a SSL configuration named GOOGLE. The name itself is actually only used
to help you to determine which of possibly many SSL configurations, is used by this particular communication
channel. Caché is using SSL/TLS configurations to store all necessary information to establish secure traffic with
the server (in this case, the Google OAuth 2.0 URIs).

Page 7 of 12

InterSystems IRIS Open Authorization Framework (OAuth 2.0) implementation - part 1
Published on InterSystems Developer Community (https://community.intersystems.com)

Please refer to documentation for more details.

Supply Client ID and Client Secret values as obtained from the Google Credentials definition form (when using
manual configuration).

Now we have all configuration steps finished and can move forward to coding a CSP application.

Client application

Client application is a simple web based CSP application. As such, it consists of server side source code that is
defined and executed by the web server and a user interface, exposed to user by a web browser. The sample code
provided expects the client application to run in tyhe GOOGLE namespace. Please modify the path /csp/google/ to
whatever your namespace is.

Client server
The client server is a simple two pages application. Within the application, we will
Assemble redirection URL to Google Authorization server

Perform requests to Google Drive API and Google Calendar API and display result

Page 1

This is a page of the application, where we decided to call Google for its resources.

Following is a minimalistic, but fully functional code, representing the page.

Cl ass Web. QAUTH2. GCoogl e1N Ext ends %CSP. Page

{

Par anet er OAUTH2CLI ENTREDI RECTURI = "https://I ocal host/csp/ googl e/ Web. OAUTH2. Googl e2N
.cls";

Par anet er QAUTH2APPNAME = " Googl e";

O assMet hod OnPage() As %st at us

{
&htm <<ht m >
<head>
</ head>
<body style="text-align: center;">

<l-- insert the page content here -->
<h1>Googl e QAut h2 API </ h1>

<p>Thi s page denp shows how to call Google APl functions using OAut h2 authorization.

<p>We are going to retrieve infornation about user and his/her Google Drive files as
wel | as cal endar entries.
>

/1 we need to supply openid scope to authenticate to Googl e

set scope="openid https://ww. googl eapi s. com aut h/ useri nfo. emai |
"https://ww. googl eapi s. conf aut h/ userinfo.profile "
"https://ww. googl eapi s. conf aut h/ dri ve. net adat a. readonly " _
"https://ww. googl eapi s. conl aut h/ cal endar . readonl y"

set properties("approval _pronpt")="force"

set properties("include_granted scopes")="true"

Page 8 of 12

http://docs.intersystems.com/latest/csp/docbook/DocBook.UI.Page.cls?KEY=GCAS_ssltls#GCAS_ssltls_aboutconfigs

InterSystems IRIS Open Authorization Framework (OAuth 2.0) implementation - part 1
Published on InterSystems Developer Community (https://community.intersystems.com)

set url =##cl ass(%BYS. QAut h2. Aut hori zat i on) . Get Aut hori zat i onCodeEndpoi nt (. . #OAUTH2APPN
AME, scope,
.. #OAUTH2CLI ENTREDI RECTURI , . properties, . i sAut hori zed, . sc)
w !, "<p><ing border="0" alt="Coogle Sign In" src="inmages/ googl e-
si gni n-button. png' >"
&ht m <</ body>
</ htm >>
Quit $$K
}
Cl assMet hod OnPreHTTP() As %Boolean [ServerOnly = 1]
{
#di m % esponse as %CSP. Response
set scope="openid https://ww. googl eapi s. com aut h/ useri nfo. emai |
"https://ww. googl eapi s. conf aut h/userinfo.profile " _
"https://ww. googl eapi s. conf aut h/ dri ve. net adat a. readonly " _
"https://ww. googl eapi s. conf aut h/ cal endar . readonl y"

i f ##cl ass(Y8YS. QAut h2. AccessToken) . | sAut hori zed(. . #OAUTH2APPNAME, , scope, . accessToken
, . i dtoken, .responseProperties,.error) {
set % esponse. Server Si deRedi r ect =" Web. QAUTH2. Googl e2N. cl s"

}
quit 1

}
}

A brief explanation of the code follows
1. OnPreHTTP method - first, we check if, by a chance, we already have obtained a valid access token as a
result of Google authorization - this can happen e.g. when we simply refresh the page. If not, we need to authorize.

If we do have token, we simply redirect page to the page showing results

2. OnPage method - we only get here if we have no valid access token available, so we need to start
communication - authenticate and authorize ourselves to Google so that it grants us the access token.

3. We define a scope string and properties array that modify behavior of Google authentication dialog (we need
to authenticate to Google before it can authorize us based on our identity).

4, Finally, we receive URL of a Google login page and we present it to the user followed by the consent page.

One more note:

We specify the true redirection page in https://www.localhost/csp/google/Web.OAUTH2.Google2N.cls in
OAUTH2CLIENTREDIRECTURI parameter. However, we have used system page of InterSystems IRIS OAUTH
Framework in the Google Credentials definition! The redirection is handled internally by our OAUTH handler class.

Page 2

This page shows results of Google authorization, and if successful, we invoke Google API calls to retrieve data.
Again, this code is minimalistic, but fully functional. We leave up to reader’s imagination more structured way of
displaying incoming data.

I ncl ude %occl ncl ude

O ass Web. QAUTH2. Googl e2N Ext ends %CSP. Page

{

Par amet er QAUTH2APPNAME = " Googl e";

Par amet er QAUTH2ROOT = "htt ps://ww. googl eapi s. cont';

Page 9 of 12

https://www.localhost/csp/google/Web.OAUTH2.Google2N.cls

InterSystems IRIS Open Authorization Framework (OAuth 2.0) implementation - part 1
Published on InterSystems Developer Community (https://community.intersystems.com)

O assMet hod OnPage() As %ot at us
{
&ht M <<ht ml >
<head>
</ head>
<body>>
/1 Check if we have an access token
set scope="openid https://ww. googl eapi s. conf aut h/ useri nfo. emai |
"https://ww. googl eapi s. conf aut h/userinfo.profile " _
"https://ww. googl eapi s. conf aut h/ dri ve. net adat a. readonly " __
"htt ps://ww. googl eapi s. conf aut h/ cal endar . readonl y"

set isAuthorized=##cl ass(¥8YS. QAut h2. AccessToken) . | sAut hori zed(. . #OQAUTH2APPNANME, , scop
e, .accessToken, . i dt oken,.responseProperties,.error)
if isAuthorized {

/1 Google has no introspection endpoint - nothing to call - the introspection endpoin
t and display result -- see RFC 7662.
w "<h3>Data from Get User | nfo API </ span></h3>"

/1 userinfo has special API, but could be also retrieved by just calling Get() nethod
with appropriate url

try {
set tHtt pRequest =##cl ass(%N\et . Ht t pRequest) . ¥0New()

$SSTHRONONERROR(sc, ##cl ass(¥6YS. QAut h2. AccessToken) . AddAccessToken(t Ht t pRequest, " quer
y", " GOOGLE", . . #OAUTH2APPNAME))

$SSTHROWONERROR(sc, ##cl ass(%BYS. QAut h2. AccessToken) . Get Useri nf o(. . #OAUTH2APPNAME, acce
ssToken, , .jsonObj ect))
W j sonQbj ect . %roJSON()
} catch (e) {

w "<h3>ERROR ", $zcvt(e. Di splayString(),"O","HTM.")_"</ h3>"

}

/**

* *
* Retrieve info fromother APlIs *
* *

**/

w " <hr>"
do ..RetrieveAPlInfo("/drive/v3/files")

do ..RetrieveAPI I nfo("/cal endar/v3/users/ nme/cal endarList")
} else {
w "<hl>Not aut hori zed! </ hl>"
}
&ht m <</ body>
</htm >>
Qit $$3XK
}

Cl assMet hod RetrieveAPl Info(api As ¥String)
{
w "<h3>Data from "_api_"</h3><p>"

try {
set tHtt pRequest =##cl ass(%Net . Ht t pRequest) . ¥0New()

Page 10 of 12

InterSystems IRIS Open Authorization Framework (OAuth 2.0) implementation - part 1
Published on InterSystems Developer Community (https://community.intersystems.com)

SSTHRONONERROR(sc, ##cl ass(#B8YS. QAut h2. AccessToken) . AddAccessToken(t Htt pRequest, " quer
y", " GOOGLE", . . #OAUTH2APPNAME))
$SSTHRONONERROR(sc, t Ht t pRequest . Get (. . #0AUTH2ROOT _api))
set tH t pResponse=t Ht t pRequest. Ht t pResponse
s tJSONString=t Ht t pResponse. Dat a. Read()
if $e(tISONString)'="{" {
/1 not a JSON
d tHtt pResponse. Qut put ToDevi ce()
} else {
w t JSONSt ri ng
w " <hr/>"
/*
/1 new JSON AP
&ht m <<t abl e border=1 styl e='border-col |l apse: coll apse' >>
s t JSONObj ect ={}. %r omJSON(t JSONSt r i ng)
set iterator=tJSONObject.%etlterator()
whil e iterator. %et Next (. key, .val ue) {
i f $isobject(value) {
set iteratorl=val ue. %etlterator()
w "<tr><td>", key, "</ td><t d><t abl e border=1 styl e=' border-
col | apse: coll apse' >"
while iteratorl. %t Next (. keyl, .valuel) {
i f $isobject(valuel) {
set iterator2=val uel. %etlterator()
w "<tr><td>", keyl, "</td><td><tabl e border=0 styl e="border-
col | apse: coll apse' >"
while iterator2. %et Next (. key2, .val ue2) {

wite !, "<tr><td>", key2, "</td><td>",value2,"</td></tr>"
}
/1 this way we can go on and on into the enbedded objects/arrays
w "</table></td></tr>"

} else {
wite !, "<tr><td>", keyl, "</td><td>",valuel,"</td></tr>"
}
}
w "</tabl e></td></tr>"
} else {
wite !, "<tr><td>", key, "</td><td>",value,"</td></tr>"
}
}
&ht m <</t abl e><hr/ >
>
*/
}

} catch (e) {

w "<h3>ERROR ", $zcvt(e.D splayString(),"O","HTM.") _"</ h3>"
}
}
}

Let's have a quick look at the code:

Page 11 of 12

InterSystems IRIS Open Authorization Framework (OAuth 2.0) implementation - part 1
Published on InterSystems Developer Community (https://community.intersystems.com)

1. We, first of all, need to check whether we have valid access token (so we were authorized)
2. If so, we can issue requests to APIs offered by the Google, and covered by the issued access token

3. For that, we use standard %Net.HttpRequest class but we add access token to the GET or POST method
according to the called API specification

4. Asyou can see, the OAUTH framework has implemented the GetUserInfo() method for your convenience, but
you can retrieve user information directly using the Google API specification, in the same way as we do it in
RetrieveAPlInfo() helper method

5. As it is common in the OAUTH world to exchange data in JSON format, we just read incoming data and
simply dump it to the browser. It is up to the application developer to parse and format received data so user can
see it in a meaningful way. But this is beyond the scope of this demonstration. (Though there is some code
commented out that shows how parsing can be done.)

Here is a screenshot of the output, showing raw JSON data.

Data from GetUserInfo AP

{"id":"109305875729928072914", "email":"isc.gs.2016 @gmail.com","verified_email":true,"name":"GS ISC2016"."given_name":"GS","family_name":"ISC2016"."picture":"https://lh3.googleusercontent.com/-
XdUIQdMkCWA/AAAAAAAAAAT/AAAAAAAAAAA/A252rscbv5SM/photo jpg"."locale":"en"}

Data from /drive/v3/files

{ "kind": "drive#fileList". "files": [{ "kind": "drive#file", "id": "0B48SPOIG70UFYTZGTEImQkIUMIK", "name": "Hi_there.txt", "mimeType": "text/plain" }. { "kind": "drive#file". "id": "0B48SPOIGT70UFc3RhenRlcl9maWxl",
"name": "Getting started". "mimeType": "application/pdf" }]}

Data from /calendar/v3/users/me/calendarList

{ "kind": "calendar#calendarList", "etag": "\"1463437202338000\"", "nextSyncToken": "CNDh4rTQ38wCEhVpc2MuZ3MuMjAXNKBnbWFpbC5ijb20=", "items": [{ "kind": ""calendar#calendarListEntry", "etag":

"\"1458124936568000\"". "id": "isc.gs.2016@gmail.com”, "summary": "isc.gs.2016@gmail.com", "timeZone": "Europe/Prague”. "colorId": "14". "backgroundColor": "#9fele7". "foregroundColor": "#000000", "selected": true.
"accessRole": "owner", "defaultReminders": [{ "method": "popup", "minutes": 30 }]. "notificationSettings": { "notifications": [{ "type": "eventCreation", "method": "email" }, { "type ntChange", "method™ "email" }, { "type":
) "

"method": "email" }] }. "primary": true }. { "kind": "calendar#calendarListEntry". "etag" 458124893504000 :
cription": "Displays birthdays of people in Google Contacts and optionally "Your Circles' from Google+. Also displays anniversary and other event dates from
Google Contacts, if applicable.”. "timeZone": "Europe/Prague 1 "13", "backgroundColor": "#92e1c0", "foregroundColor": "#000000". "accessRole": "reader". "defaultReminders": [] }. { "kind": "calendar#calendarListEntry".
Vetag": "\"1458124776219000\"", "id": "en.czech#holiday@group.v.calendar.google.com”, "summary": "Holidays in Czech Republic", "description”: "Holidays and Observances in Czech Republic", "timeZone": "Europe/Prague”,
"colorId": "8". "backgroundColor": "#16a765". "foregroundColor": "#000000", "selected": true. "accessRole": "reader". "defaultReminders": [] }]}

"eventCancellation", "method": "email" }, { "type"
"#contacts(@group.v.calendar.g

Continue to part 2, describing InterSystems IRIS acting as authorization server and OpenID Connect provider.

7 https://tools.ietf.org/html/rfc6749, https:/tools.ietf.org/html/rfc6750

#Authentication #Access control #Best Practices #0Auth? #Security #Caché #InterSystems IRIS

Source
URL:https://community.intersystems.com/post/intersystems-iris-open-authorization-framework-
oauth-20-implementation-part-1

Page 12 of 12

https://community.intersystems.com/post/cach%C3%A9-open-authorization-framework-oauth-20-implementation-part-2
https://tools.ietf.org/html/rfc6749
https://tools.ietf.org/html/rfc6750
https://community.intersystems.com/tags/authentication
https://community.intersystems.com/tags/access-control
https://community.intersystems.com/tags/best-practices
https://community.intersystems.com/tags/oauth2
https://community.intersystems.com/tags/security
https://community.intersystems.com/tags/cach%C3%A9
https://community.intersystems.com/tags/intersystems-iris
https://community.intersystems.com/post/intersystems-iris-open-authorization-framework-oauth-20-implementation-part-1
https://community.intersystems.com/post/intersystems-iris-open-authorization-framework-oauth-20-implementation-part-1

