Asynchronous Websockets -- a quick tutorial
Published on InterSystems Developer Community (https://community.intersystems.com)

Article
Fabian Haupt - reb 12,2016 gy read

Asynchronous Websockets -- a quick tutorial

Intro

Please note, this article is considered
deprecated, check out the new revision over
here:
https://community.intersystems.com/post/tutoria
l-websockets

The goal of this post is to discuss working with Websockets in a Caché environment. We are going to have a quick
discussion of what websockets are and then talk through an example chat application implemented on top of
Websockets.

Requirements:

* Caché 2016.1+
¢ Ability to load/compile csp pages and classes

The scope of this document doesn't include an in-depth discussion of Websockets. To satisfy your thirst for details,
please have a look at RFC6455[1]. Wikipedia also provides a nice high-level overview[2].

The quick'n'dirty version: Websockets provide a full-duplex channel over a TCP connection. This is mainly focused
on, but not limited to, facilitating a persistent two-way communication channel between a web client and a
webserver. This has a number of implications, both on the possiblities in application design as well as resource
considerations on the server side.

The application

One of the standard examples, kind of the 'hello world' of Websockets is a chat application. You'll find numerous
examples of similar implementations for many languages.

First we'll define a small set of goals for our implementetation. Some of these might sound basic, but keep in mind,

any project lives and dies with a proper scope definition:

* Users to send messages
* Messages sent by one user should be broadcasted to all connected users

Page 1 of 7

https://community.intersystems.com/user/fabian-haupt-0
https://community.intersystems.com/post/tutorial-websockets
https://community.intersystems.com/post/tutorial-websockets

Asynchronous Websockets -- a quick tutorial
Published on InterSystems Developer Community (https://community.intersystems.com)

* Provide different chat rooms
* A user should get a list of currently connected users
* A user should be able to set their own nickname

A production like chat application will have many more requirements, but the goal here is to demonstrate basic
Websocket programming and not to replace IRC ;)

You'll find the code we are about to discuss in the repository (https://github.com/intersystems/websockets-tutorial).
It contains:

* ChatTest.csp -- The CSP page actually showing the chat
* Chat.Server.cls -- Server side class managing the Websocket connection

To be able to manage the chatroom and the communication between the client and the server side, we are defining
a couple of message formats we are going to use. Please note, that this is purely up to you. Websockets do not
prescribe any format of the data being sent over it.

A chat message:

"Type": " Chat",
"Message": " <nmsg>"

A status update, informing the client of its websocketID

"Type":"Status",
"WBl D' " <websocket i d>"

The list of currently connected users (usually updated when a new user connects/disconnects):

{

"Type":"userlist",
"Users": [{"Nane":"<username>"},

]

The Client side

We are going to render the client side with a simple single html5 page. This is basic html with a little bit of css to
make it look nice. For details, look at the implementation of ChatTest.csp itself. For simplicity we're pulling in
jquery, which will allow us to make dynamic updates to the page a little easier.

Page 2 of 7

https://github.com/intersystems/websockets-tutorial

Asynchronous Websockets -- a quick tutorial
Published on InterSystems Developer Community (https://community.intersystems.com)

Down the road we are interested only in a couple of dom elements, identified by:

¢ #chat -- the ul holding the chatmessages

¢ #chatdiv -- the div holding #chat (used for automatic scrolling to the last message)
¢ #userlist -- the ul holding the list of currently active users

* #inputline -- the input field where the user is going to type messages

There are a couple of lines of javascript code in init() which are dealing with setting up events and handling input
which we will not discuss. The first interesting bit is opening the WebSocket and binding function handlers to the
relevant events:

In function init(): [..]

ws = new WebSocket (((w ndow. | ocation. protocol == "https:") ? "wss:" : "ws:") + "//"
+ wi ndow. | ocation. host + " #($system CSP. Get Def aul t App($nanespace)) #/ Chat . Server. cl s"

+" ?r oon=" +ROOM) ;

This opens a websocket connection to our server side class, either using ws or secured wss protocol, depending
on the way we connected to our page.

ws. onopen = function(event) {
$("#headl i ne"). htm ("CHAT - connected");
s

Once the WebSocket has been opened, we update the headline to let us know we are connected. Note that we're

Page 3 of 7

https://github.com/kazamatzuri/websockets-tutorial/blob/master/screenshot.png

Asynchronous Websockets -- a quick tutorial
Published on InterSystems Developer Community (https://community.intersystems.com)

using the CSP expression "#($system.CSP.GetDefaultApp($namespace))#" to get the path of the current
namespace. This will only work if you're using Caché to actually serve those pages. If you're only connecting to
Caché as a backend and are planning on serving the page through a webserver directly, you'll have to hardcode
the path to the websocket class (i.e. /csp/users/Chat.Server.cls)

ws. onnessage = function(event) {
var d=JSON. parse(event. data);
/lvar nmsg=d. Message;
if (d.Type=="Chat") {
$("#chat") . append(w apnessage(d));
$("#chatdi v").ani mate({ scroll Top: $('#chatdiv').prop("scroll
Hei ght")}, 1000);
} else if(d. Type=="userlist") {
$("#userlist"). htnl (wapuser(data. Users));
} else if(d. Type=="Status") {
docunent . get El enent Byl d(" headl i ne").innerHTM. = "CHAT - conne
cted - "+d. WSl D,
}
1

This function handles an incoming message. We parse the JSON formatted data and then simply act based on the
different types of messages as we've defined them earlier: * Chat: using the helper function wrapmessage, we add
the new message to the #chat ul * userlist: using the helper function wrapuser, we generate and update the
#userlist * Status: is a general status update, and we'll put the websocket ID into the headline

ws.onerror = function(event) { alert("Received error"); };

This handles an error, we're simply displaying a message.

ws. oncl ose = function(event) {
ws = null;
$("#headl i ne"). htnm ("CHAT - disconnected");

Closing the websocket leads to updating the headline again.

The one function left is

function send() {

var line=$("#inputline").val();

if (line.substr(0,5)=="/nick"){
ni ckname=line.split(" ")[1];
i f (nicknanme==""){

ni ckname="defaul t";

}

} else {
var nsg=btoa(line);
var data={};
dat a. Message=nsg;
dat a. Aut hor =ni cknane;

if (ws && nsg!="") {
ws. send(JSON. stringify(data));

Page 4 of 7

Asynchronous Websockets -- a quick tutorial
Published on InterSystems Developer Community (https://community.intersystems.com)

}
}
$("#inputline").val ("");

Here we handle setting the nickname via "/nick newnickname" and sending a new chatmessage to the server. For
that we b64 encode the textmessage and wrap it into an object, which we'll send json encoded to the server. We're
doing the b64 encoding to avoid having to deal with special characters.

Server side.

The server side code is a simple class extending %CSP.WebSocket. We'll discuss the 5 functions in our
implementation now.

Met hod OnPreServer() As %status
{
set .. SharedConnection=1
set roonF$CET(% equest . Data("roont', 1), "defaul t")
set:roonE"" roon="default"
if (..WebSocketID =""){
set "CacheTenp. Chat. WebSocket s(. . WbSocket | D) =""
set ~CacheTenp. Chat . Roon(.. WebSocket | D) =r oom
} else {
set ~CacheTenp. Chat . Error ($l NCREMENT(~CacheTenp. Chat . Error), "no websocketid defin
ed") =$HOROLOG
}

Qit $$SK
}

is the hook that is getting called for a new WebSocket connection. Here we set ..SharedConnection=1 to indicate
that we want to be able to write to this socket from multiple processes. We are also recording the new socket ID
and association with a chatroom into globals. For this example we're using *CacheTemp.Chat.* in the hopes to not
conflict with anything. Obviously these can be replace by other mechanisms.

Met hod Server () As %status
{

job ..StatusUpdate(..WbSocket | D)
for {
set data=..Read(.si ze,.sc, 1)
if ($3%lI SERR(sc)){
i f ($$$CETERRORCODE(sc) =$$$CSPWebSocket Ti neout) {
/1 $$$DEBUG "no data")
}
I f ($SSCETERRORCODE(sc) =$$$CSPWebSocket C osed) {
kill ~CacheTenp. Chat.WebSocket s(..WbSocket | D)
kill ~CacheTenp. Chat. Roon(..WbSocket | D)
do .. EndServer ()
Quit // dient closed WbSocket
}
} else {
set m d=$I (*CacheTenp. Chat . Message)
set sc= ##cl ass(%EN. Auxi |l i ary. jsonProvi der). %Convert JSONToObj ect (da

Page 5 of 7

Asynchronous Websockets -- a quick tutorial
Published on InterSystems Developer Community (https://community.intersystems.com)

ta, "%bject”,.nsqg)
set msg. Room=$G~CacheTenp. Chat . Roon(.. WebSocket | D))
set nsg. Wsl D=. . WebSocket I D //meta data for the nmessage
set ~CacheTenp. Chat. Message(m d) =nsg. $t 0JSON()
job ..ProcessMessage(mn d)
}
}

Quit $$SK

The Server() as %Status method is being called for a WebSocket afterwards. This holds our main loop for incoming
messages from the client. An incoming message gets stored into a global after which we job off a updater
(job ..ProcessMessage(mid)). This is all we're doing in our main loop.

/1l clients for this room

Cl assMet hod ProcessMessage(nid As %String)

{
set msg = ##cl ass(%bj ect) . $f r onI SON($GET(*CacheTenp. Chat . Message(nid)))
set nsg. Type="Chat"

set msg. Sent =$ZDATETI ME($HORCOLQOG, 3)
set c=$ORDER(”CacheTenp. Chat . WebSockets(""))
while (c'="") {

set ws=..%New()

set sc=ws. QpenServer (c)

i f $$$I SERR(sc) {

set ~CacheTenp. Chat . Error ($| NCREMENT(~CacheTenp. Chat. Error), "open failed for",c
)=sc

}

set sc=ws. Wite(nsg. $t 0JSON())

set c=$ORDER("CacheTenp. Chat. WbSockets(c))

ProcessMessage is getting a message id passed in. It will parse the received json data into an %0Object. We now
$Order through our "CacheTemp.Chat.WebSockets global to send the message to all connected chat clients for
this room.

The BroadCast method demonstrates how to send a chatmessage to all connected clients. It's not being used on
normal operations.

Wrapup

Exercise left for the user:

Implement the tracking of usernames on the server side and send a userlist message at the appropriate times.
Caveats, or why this isn't production code.

For a production ready system the inputs would need to be sanitized. We also hardly added any error trapping,
access control, etc .

[1]https://tools.ietf.org/html/rfc6455

Page 6 of 7

https://tools.ietf.org/html/rfc6455

Asynchronous Websockets -- a quick tutorial
Published on InterSystems Developer Community (https://community.intersystems.com)

[2]https://en.wikipedia.org/wiki/WebSocket

Feedback

Please feel free to provide feedback in the comments below. I'll also try and answer any questions!

#Frontend #Tutorial #Caché

Source URL:https://community.intersystems.com/post/asynchronous-websockets-quick-tutorial

Page 7 of 7

https://en.wikipedia.org/wiki/WebSocket
https://community.intersystems.com/tags/frontend
https://community.intersystems.com/tags/tutorial
https://community.intersystems.com/tags/cach%C3%A9
https://community.intersystems.com/post/asynchronous-websockets-quick-tutorial

