
Introducing new JSON capabilities in Caché 2016.1
Published on InterSystems Developer Community (https://community.intersystems.com)

 Article
 Stefan Wittmann · Feb 3, 2016 11m read

Introducing new JSON capabilities in Caché 2016.1
This post is intended to guide you through the new JSON capabilities that we introduced in Caché 2016.1. JSON
has emerged to a serialization format used in many places. The web started it, but nowadays it is utilized
everywhere. We've got plenty to cover, so let's get started.

Warning: Some of the features and syntax documented here were subsequently changed in 2016.2, so will only
work on 2016.1. See this other article for details.

Our JSON support so far was tightly coupled with the ZEN framework, our own framework for building web
applications. Over time, we recognized a rising demand for accessing the JSON functionality outside of ZEN.
Though it was possible to be used outside of ZEN, it was confusing and the old JSON support included a couple of
shortcomings that required the introduction of a new API. I want to describe the new API in this post and provide
you with some background information why we made certain design choices.

The first change you will notice is the introduction of two new classes, %Object and %Array, both extending
%AbstractObject. These classes are your primary interface for handling dynamic data, that is, data with a dynamic
structure like JSON. Both classes are located in the %Library package as they implement general-purpose
functionality.

%Object allows you to create what we call a dynamic object. You will not implement a subclass, but rather you will
instantiate a dynamic object and add properties you require at runtime. You can also remove properties and we
provide an iterator interface for introspection and discovery of existing properties. Properties are always unordered
and we will not guarantee any order.

USER>set object = ##class(%Object).$new()

USER>set object.name = "Stefan Wittmann"

USER>set object.lastSeriesSeen = "Daredevil"

USER>set object.likes = "Galaxy"

The above code sample creates a new dynamic object with three properties name, lastSeriesSeen and likes.

%Array is an ordered collection of values. You can add new values to an array, you can remove them and iterate
over it. I think you get the picture. We call these dynamic arrays. Arrays do support sparseness, that means you
can assign a value to slot 100 while slot 0 to 99 are left unassigned and we only allocate space for one value,
instead of 101.

Page 1 of 8

https://community.intersystems.com/user/stefan-wittmann
https://community.intersystems.com/post/json-changes-cach%C3%A9-20162

Introducing new JSON capabilities in Caché 2016.1
Published on InterSystems Developer Community (https://community.intersystems.com)

USER>set array = ##class(%Array).$new()

USER>do array.$push(1)

USER>do array.$push("This is a string")

USER>do array.$push(object)

The above example creates a dynamic array with three values. The first is a number, the second is a string and the
last is the dynamic object from our previous example. We are building a dense dynamic array by pushing new
values to the array. A sparse array can be built by setting values at a specific key. But let's save sparseness for
later.

Producing JSON

If you want to serialize a dynamic entity to JSON you just call the method $toJSON() on it. The method is pretty
smart and returns a string if it fits into a single string and a stream object otherwise. If it is used in a DO statement it
will send the output to the current device. The output will be assigned to the left-hand variable if it is used in a SET
statement.

USER>do object.$toJSON()

{"name":"Stefan Wittmann","lastSeriesSeen":"Daredevil","likes":"Galaxy"}

USER>do array.$toJSON()

[1,"This is a string.",{"name":"Stefan Wittmann","lastSeriesSeen":"Daredevil","likes"
:"Galaxy"}]

Consuming JSON

The other direction is pretty simple as well. There are plenty of ways how you can receive a JSON object, but
almost always it will end up in a variable, either as a string or a stream, depending on the size. Just call
$fromJSON() and pass in your JSON string or stream. We will take care of the rest.

Page 2 of 8

Introducing new JSON capabilities in Caché 2016.1
Published on InterSystems Developer Community (https://community.intersystems.com)

USER>set someJSONstring = "{""firstname"":""Stefan"",""lastname"":""Wittmann""}"

USER>set consumedJSON = ##class(%AbstractObject).$fromJSON(someJSONstring)

USER>write consumedJSON.$size()
2
USER>write consumedJSON.$toJSON()
{"firstname":"Stefan","lastname":"Wittmann"}

The above code example makes use of the method $size() to get the number of properties for
the consumedJSON object. $size() is also available for arrays and returns the number of assigned values in the
array.

Moving on

Now that you have seen the basics for the new API for dynamic objects and arrays, let's explore some of the more
advanced features and topics. As the data structures are defined at runtime it is very important to provide proper
tooling for discovering content. The most important utility is an iterator that allows you to loop through the properties
of a dynamic object.

USER>set iter = object.$getIterator()

USER>while iter.$getNext(.key,.value) { write "key "_key_":"_value,! }
key name:Stefan Wittmann
key lastSeriesSeen:Daredevil
key likes:Galaxy

A very important aspect while designing the API was consistency. A generic functionality like an iterator should
behave the same for objects and arrays.

USER>set iter = array.$getIterator()

USER>while iter.$getNext(.key,.value) { write "key "_key_":"_value,! }
key 0:1
key 1:This is a string.
key 2:2@%Library.Object

The iterator allows us to easily introspect the content of an array and, therefore, we can now discuss sparse arrays.
Let's assume we set another value at the positional index 10. Keep in mind that arrays are zero-based.

Page 3 of 8

Introducing new JSON capabilities in Caché 2016.1
Published on InterSystems Developer Community (https://community.intersystems.com)

USER>do array.$set(10,"This is a string in a sparse array")

USER>write array.$toJSON()
[1,"This is a string.",{"name":"Stefan Wittmann","lastSeriesSeen":"Daredevil","likes"
:"Galaxy"},null,null,null,null,null,null,null,"This is a string in a sparse array"]

You can observe that the 11th value is set to the string “This is a string in a sparse array” and all slots between
index 3 and 9 are serialized with null values. These null values do not exist in memory and they are only serialized
as null values because JSON does not support undefined values. You can easily prove this by iterating over the
array as the following code snippet.

USER>set iter = array.$getIterator()

USER>while iter.$getNext(.key,.value) { write "key "_key_":"_value,! }
key 0:1
key 1:This is a string.
key 2:2@%Library.Object
key 10:This is a string in a sparse array

As you can see only 4 keys are defined and keys 3 to 9 are not set to any value. The code sample demonstrates
this concept with an array, but the same is true for dynamic objects. It is very important for various environments to
handle sparse data efficiently and you will see some references to this in blog posts I will share later.

Error handling and some sugar

Another important fact is that we are throwing exceptions in the case of an error instead of returning a %Status
value. Let’s see what happens if we try to parse an invalid JSON string.

USER>set invalidObject = ##class(%AbstractObject).$fromJSON("{,}")

<THROW>zfromJSON+24^%Library.AbstractObject.1 *%Exception.General Parsing error 3 Lin
e 1 Offset 2

You can see that the thrown exception includes enough information to conclude that the second character on the
first line is invalid. Therefore, any code that makes use of the new JSON API should be surrounded with a try/catch
block at some level. If you think about it, this makes sense as we are dealing with dynamic data and the data may
not fit your assumptions.

Page 4 of 8

Introducing new JSON capabilities in Caché 2016.1
Published on InterSystems Developer Community (https://community.intersystems.com)

There are multiple benefits for using exceptions for the report mechanism, but the most important reason is that it
allows each method to return a reference to the output, therefore allowing chaining of methods:

USER>do array.$push(11).$push(12).$push(13)

USER>write array.$toJSON()
[1,"This is a string.",{"name":"Stefan Wittmann","lastSeriesSeen":"Daredevil","likes"
:"Galaxy"},null,null,null,null,null,null,null,"This is a string in a sparse array",11
,12,13]

Tight COS integration

All the code samples I provided so far created the dynamic objects and arrays explicitly. We called the constructor
of the corresponding class - %Object or %Array ‒ and started to manipulate the in-memory object.

With the new API there is an even simpler way to create dynamic objects and arrays by implicitly creating them with
the JSON syntax:

USER>set object = {"name":"Stefan Wittmann","lastMovieSeen":"The Martian","likes":"Wr
iting Blogs"}

USER>write object.$toJSON()
{"name":"Stefan Wittmann","lastMovieSeen":"The Martian","likes":"Writing Blogs"}
USER>set array = [1,2,3,[4,5,6],true,false,null]

USER>write array.$toJSON()
[1,2,3,[4,5,6],true,false,null]

Isn’t that exciting? It is a very clear, compact and human-readable way of describing what you want to create. You
may have realized that the array is initialized with the JSON values true, false and null. These values are not
directly accessible in COS, but they can be used within the JSON syntax.

We did not stop there. To really make this useful and dynamic we allow values to be COS expressions. Consider
this example:

USER>set name = "Stefan"

USER>set subObject = {"nationality":"German","favoriteColors":["yellow","blue"]}

USER>set object = {"name":name,"details":subObject,"lastUpdate":$ZD($H,3)}

Page 5 of 8

Introducing new JSON capabilities in Caché 2016.1
Published on InterSystems Developer Community (https://community.intersystems.com)

USER>write object.$toJSON()
{"name":"Stefan","details":{"nationality":"German","favoriteColors":["yellow","blue"]
}," lastUpdate ":"2016-01-31"}

This allows you to easily produce and alter JSON structures on the server. There is one thing you should consider,
though: Accessing values will always produce a COS friendly value. Let’s explore an example to understand what
this actually means:

USER>set array = [1,2,3,[4,5,6],true,false,null]

USER>set iter = array.$getIterator()

USER>while iter.$getNext(.key,.value) { write "key "_key_":"_value,! }
key 0:1
key 1:2
key 2:3
key 3:5@%Library.Array
key 4:1
key 5:0
key 6:

The output until key 4 should be expected. Key 4 returns the COS value 1 for the JSON value true. Similar for key
5, which returns the COS value 0 for the JSON value false. Probably less obvious is that key 6 is returning an
empty string for the JSON value null.

The reason for this is that we want to return COS friendly values that can directly be used in COS conditionals. By
mapping true to 1 and false to 0 you can directly test for truthiness and falseness in an if-statement. An empty
string is as close as you can get to a JSON null.

But how do you distinguish the JSON value pairs true and 1, false and 0 and null and “” from each other? You do
so by checking the type. The method you want to use for this is $getTypeOf().

USER>w array.$getTypeOf(5)
boolean
USER>w array.$getTypeOf(6)
null

To close the gap you can pass in a type in the setter for dynamic objects and arrays to specify which type the value
represents:

Page 6 of 8

Introducing new JSON capabilities in Caché 2016.1
Published on InterSystems Developer Community (https://community.intersystems.com)

USER>do array.$set(7,1)

USER>write array.$toJSON()
[1,2,3,[4,5,6],true,false,null,1]
USER>do array.$set(7,1,"boolean")

USER>write array.$toJSON()
[1,2,3,[4,5,6],true,false,null,true]

First we set the key 7 to the value 1, which obviously translates to the JSON number 1. If we want to set the
value true instead, we can specify the type “boolean” to the setter. I leave the exercise with the JSON value null for
the reader.

Behind the scenes

Congratulations for getting this far. This is pretty much information and you are still reading. Obviously there are
more API calls to learn, but I would like to refer you to the documentation as well as the class documentation for
this topic. There are obviously more advanced topics we can cover and I would like to cover two if them.

Performance

Performance is a difficult word. It means so many things and you have to be very careful to state what you mean
when you make use of it. One of the shortcomings of the old API, which includes the zenProxyObject is its non-
linear runtime behavior for serializing and deserializing JSON. While consuming smaller JSON content is just fine,
consuming a raw JSON content as large as 100MB on disk could take a couple of minutes. One reason for this is
that parsing is implemented in COS, which is not the most efficient language for parsing character streams. In
addition, the complete object graph had to be constructed in memory.

We took great care to ensure that we addressed this issue with the new API. Parsing is directly implemented in the
kernel and we invented a highly optimized in-memory structure to manage dynamic entities. The following table
shows the results from a performance test we conducted recently.

We tested the zenProxyObject on Caché 2015.1, the new JSON support on Caché 2016.1 and as a third-party
comparison, we ran the same test against Node.JS. We loaded a 10.8 MB file with 1,000 JSON companies and
several embedded objects and you can see that the numbers went down from 28,000ms to 94ms with the new
JSON support. Even better the new JSON support is as fast as running the same operation in Node. Scaling up the
test makes the improvement even more clear. Consuming a file with 10,000 JSON companies improved from
386,700ms to 904ms, which is on par with Node again. In-memory operations are pretty fast and linear, but as
expected Node is a clear winner here, as there is a native support for JSON objects in-memory.

Overall we are pretty happy with the numbers. Let us know about your experience!

Page 7 of 8

Introducing new JSON capabilities in Caché 2016.1
Published on InterSystems Developer Community (https://community.intersystems.com)

System Methods

This is the last topic I want to shed some light on before I conclude. You may have wondered why all method
names started with a dollar character, $new(),$set(), $pop(), $size() and so on. This is a new category of methods
we introduced, called system methods. There are two different types of system methods, similar to standard
methods: instance and class methods.

System methods cannot be overridden by standard methods as they live in a separate namespace. If you’ve
worked with the zenProxyObject, you are probably aware that we reserved some property names. The reason is
that the zenProxyObject defined some internal properties and methods that allowed it manage its state and provide
the API. These stepped on the users namespace and had to be reserved.

With the introduction of system methods we got rid of this problem and there are no reserved property names. Your
JSON data can be truly dynamic from now on. System methods are always prefixed with a dollar character.

Conclusion

We think the new JSON support is a huge step forward and will help you to build better interfaces faster. Expect to
see some benefits for handling huge sets of data as the API gets adopted by other parts of our stack, e.g.
DeepSee. If you haven’t had a chance to experience the new API yet make sure to give it a try. I hope you are as
excited about it as we are, as this is the very foundation for another feature that I will be discussing in a separate
blog post soon. Stay tuned.

I am looking forward for your feedback.

Stefan

#Interoperability #JSON #Node.js #ObjectScript #Frontend #ZEN #Caché

 Source URL:https://community.intersystems.com/post/introducing-new-json-capabilities-cach%C3%A9-20161

Page 8 of 8

https://community.intersystems.com/tags/interoperability
https://community.intersystems.com/tags/json
https://community.intersystems.com/tags/nodejs
https://community.intersystems.com/tags/objectscript
https://community.intersystems.com/tags/frontend
https://community.intersystems.com/tags/zen
https://community.intersystems.com/tags/cach%C3%A9
https://community.intersystems.com/post/introducing-new-json-capabilities-cach%C3%A9-20161

